Role of the WHO IVD Prequalification Programme in Light of National Regulatory Authority Approval

UN Prequalification of Medicines, Diagnostics and Vaccines 6th Consultative Stakeholder Meeting

4 April 2011

Elliot P. Cowan, Ph.D.
Chief, Product Review Branch
Division of Emerging and Transfusion Transmitted Diseases
FDA/CBER/OBRR
Goals of Talk

- Describe how a National Regulatory Authority regulates IVDs, using FDA as an example

- Understand issues that NRA approval does not necessarily address for IVD use in resource-limited settings
Bringing an IVD to Market in the US: General Approach

QUALITY
- Test design
- Manufacturing process
- Manufacturing facility

TEST
- Reliable, robust test
- Public health benefit

QUALITY

???
Bringing an IVD to Market in the US: Regulatory Framework

- **Laws/Acts**
 - Federal Food, Drug, and Cosmetic Act of 1938
 - Medical Device Amendments of 1976
 - FDA Modernization Act of 1997
 - Medical Device User Fee and Modernization Act of 2002
 - FDA Amendments Act of 2007

- **Regulations**
 - Code of Federal Regulations (CFR), Title 21, Subchapter H, Part 800: Medical Devices
 - 21 CFR Part 50: Protection of Human Subjects

- **Guidance documents**
Bringing an IVD to Market in the US: Device Classification

- **Risk-based regulatory approach**
 - Class I (low risk)
 - Class II (moderate risk)
 - Class III (high risk)
- **Data-driven marketing approvals**
- **Device regulatory controls include:**
 - Quality Management System, including design controls
 - Premarket submission review
 - Labeling
 - Registration of manufacturer and listing of marketed devices
 - Vigilance - passive surveillance for all; active for a subset of devices
FDA Approval of IVDs: HIV Detection

- IVDs used for the detection of HIV infection are Class III devices
- Require submission of a premarket approval application (PMA)
 - Filed by a sponsor to obtain FDA approval to market a device
 - 21 CFR 814
PMA: Required Elements (814.20)

- Name and address of the applicant
- Table of contents
- Summary section
 - Indications for use
 - Why a patient would use a certain test, target population, target disease/condition, for use by healthcare professional or lay user, etc.
 - Intended use
 - Description of what the manufacturer intended to measure with a certain test (manufacturer’s objective intent)
 - Device description
 - Marketing history
 - Summary of studies
 - Conclusions drawn from studies
PMA: Required Elements cont.

A complete description of:
- The device, including pictorial representations
- Each of the functional components
- The properties of the device relevant to the diagnosis, treatment, prevention, cure, or mitigation of a disease or condition
- The principles of operation of the device
- The methods, facilities, and controls used in the manufacture, processing, packing, storage, and where appropriate, installation of the device.
 - See also 21 CFR 820 - Quality System Regulations
 - Design controls
 - Manufacturing controls
PMA: Required Elements cont.

Technical sections containing data and information in sufficient detail to permit FDA to determine whether to approve the application

- Results of non-clinical (analytical) laboratory studies (what are the capabilities of the device?)
- Results of clinical investigations involving human subjects (how will the device be expected to perform in the real world?)
 - Studies on US populations
PMA: Required Elements cont.

- Bibliography of all published reports
- Copies of all proposed labeling for the device
- Environmental assessment
- Financial disclosure
- Additional information specified in 814.20
- Manufacturing site inspection
 - To meet requirements set out in Quality System Regulations (21 CFR 820)
 - Biennial post-approval inspections
Evaluation of Manufacturing Facilities: Quality System Inspection Technique
Decision-Making Process

• Review committee consisting of product and clinical experts, statistician, reviewers for facility issues and bio research monitoring (to ensure quality of clinical data)

• 180-day review clock, communicating issues to sponsor throughout the review time
Data to Support Approval of an HIV IVD

- **Clinical studies**
 - Known positives and prospective studies in low risk and high risk populations
 - Studies for each matrix claimed
 - Multiple geographically distinct sites
 - Multiple independent kit lots

- **Analytical studies**
 - Seroconversion panels, dilution panels, low titer panels
 - Interfering substances, unrelated medical conditions
 - Non-B subtypes
 - Reproducibility studies
 - Stability studies (shelf-life, shipping)
 - Etc.
Changes to the IVD

Guidance for Industry and FDA Staff

Modifications to Devices Subject to Premarket Approval (PMA) - The PMA Supplement Decision-Making Process

Document Issued on: December 11, 2008

This document supersedes “Modifications to Devices Subject to Premarket Approval (PMA) - The PMA Supplement Decision-Making Process” dated March 9, 2007.

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm089274.htm
FDA Clearance of IVDs: Malaria Detection

• IVDs used for the detection of malaria are Class II devices

• Require submission of a pre-market notification: 510(k)
 - Filed by a sponsor to obtain FDA clearance to market a device
 - “Substantially equivalent” to a predicate device (previously cleared by FDA or marketed prior to 1976)
Pre-market Requirements for Malaria Diagnostics

• Submission of 510(k) pre-market notification application
 - Intended use, description of device, analytical studies, clinical studies, software/instrumentation, identification of risks, labeling, etc.
 - Manufacturing site inspection not required pre-market (expectation that Quality System is in place)

• Decision-making process
 - Review team consisting of product and clinical experts, statistician; bioresearch monitoring to ensure quality of clinical data - only when "for cause"
 - 90-day review clock, with interactive review, max. 3 deficiency letters issued
NRA vs. WHO IVD Prequalification

- 11-13 October 2010

WHO Technical Working Group on Product Dossier Assessment for Prequalification of Diagnostics

- Comparison of Prequalification criteria to NRA criteria for HIV and malaria IVDs
Conclusion from Meeting

NRA IVD Assessment

WHO IVD Prequalification

CONSTANTS

VARIABLES

VARIABLES

VARIABLES
\[
R = \rho^l e^{-\frac{1}{2} \rho} H(\rho)
\]
\[
R' = \left(\frac{l}{\rho} - \frac{1}{2}\right) R + \rho^l e^{-\frac{1}{2} \rho} H'
\]

\[
\frac{1}{\rho^2} \frac{(\rho^2 R')'}{\rho^l e^{-\frac{1}{2} \rho}} = \left(\frac{l}{\rho^2} - \frac{1}{\rho}\right) H + \left(\frac{l}{\rho} - \frac{1}{2}\right) \left[\left(\frac{l}{\rho} - \frac{1}{2}\right) H + H'\right]
\]
\[
+ \left(\frac{l + 2}{\rho} - \frac{1}{2}\right) H' + H''
\]
\[
= \left[\frac{l(l + 1)}{\rho^2} - \frac{l + 1}{\rho} + \frac{1}{4}\right] H + \left[\frac{2l + 2}{\rho} - 1\right] H' + H''
\]
Constants?
Design and Manufacturing

- Product description
- Product design
- Design overview
- Formulation and composition
- Biological safety
- Documentation of design changes
- Manufacturing process
- Overview of manufacture
- Site of manufacture
- Key suppliers
Constants?
Product Performance

- Analytical studies*
- Specimen types
- Analytical performance characteristics
- Accuracy of measurement
- Analytical sensitivity
- Analytical specificity
- Metrological traceability of calibrators and control material values
- Measuring range of assay
- Validation of assay cutoff
- Software verification and validation
Constants?

Other

- Commercial history (countries of supply)
- Quality Management System
 - Quality manual
 - Quality management system documents
- Inspection
\[
R = \rho^l e^{-\frac{1}{2} \rho} H(\rho)
\]
\[
R' = \left(\frac{l}{\rho} - \frac{1}{2} \right) R + \rho^l e^{-\frac{1}{2} \rho} H'
\]

VARIABLES

\[
\frac{1}{\rho^2} \left(\rho^2 R' \right)' = \left(\frac{l}{\rho^2} - \frac{1}{\rho} \right) H + \left(\frac{l}{\rho} - \frac{1}{2} \right) \left(\frac{l}{\rho} - \frac{1}{2} \right) H' + H''
\]

\[
+ \left(\frac{l}{\rho} - \frac{1}{2} \right) H' + H''
\]

\[
= \left[\frac{l(l+1)}{\rho^2} - \frac{l+1}{\rho} + \frac{1}{4} \right] H + \left[\frac{2l+2}{\rho} - 1 \right] H' + H''
\]
Variables

- What does FDA approval/clearance of an IVD address?
 - Safety and effectiveness for marketing in the US
 - Test performance in predominantly US populations
 - Consistency of manufacturing at specific manufacturing sites
 - Test design for US users
 - Test design for US testing environments
Variables
Test Performance

- Testing in US populations
 - Population/region differences in test performance
 - Sensitivity/specificity/predictive values may vary by country/region/disease prevalence
 - Confounding factors (co-infections, environmental, other)
Variables
Manufacturing Site

- Manufacturing facility evaluated with product
- Same controls in place at manufacturing site not approved with product?
- Potential for significant impact on product performance
- Product design
Variables
Product Design

- **US approved/cleared test designed for US operators and US conditions**
 - Storage requirements (temperature/humidity) and stability
 - Instructions for use
 - Trained personnel

- **Resource-limited settings**
 - Temperature and humidity outside of validated range
 - Lack of trained personnel
 - Lack of special storage conditions
 - Unreliable power sources
 - Need for studies to demonstrate test shelf-life, shipping stability, etc.
Variables
Product Design, cont.

• “Regulatory versions” of products
 - Manufacturers produce different versions of the same test for use in different markets
 • Manufacturing site
 • Product quality
 • Different NRA degree of oversight
 - May lead to assumption that all tests by that name are the same
Variables

Risk

- Risk/benefit consideration may differ from region to region
- Nevertheless, it is critical for:
 - Performance parameters to be well characterized
 - Performance to be consistent from lot to lot
 - Labeling to be truthful
SUMMARY

• Review of IVDs is critical to assure their safety and effectiveness and to support their role in maintaining public health.

• There are elements of that evaluation by an NRA that may be taken into account by WHO for its IVD prequalification (constants).

• However, there are also critical elements that do not necessarily transfer (variables), and should be taken into account to assure maximum public health benefit in specific settings.