Notes on the design of bioequivalence study:
Emtricitabine/Tenofovir/Efavirenz

Notes on the design of bioequivalence studies with products invited to be submitted to the WHO Prequalification Team – Medicines (PQTm) are issued to aid manufacturers with the development of their product dossier. Deviations from the approach suggested below can be considered acceptable if justified by sound scientific evidence.

Below, additional specific guidance is provided on the invited immediate release products, containing emtricitabine/tenofovir/efavirenz.

Pharmacokinetics of Emtricitabine, Tenofovir and Efavirenz

Maximum emtricitabine and tenofovir concentrations are observed in serum within 0.5 to 3.0 hours of dosing in the fasted state. Efavirenz peak plasma concentrations are typically reached within 5 h post-dose.

The half-life of emtricitabine and tenofovir is 10 hours, whereas the mean terminal half-life of efavirenz is 52–76 h following single doses.

Administration of emtricitabine with a high-fat meal does not affect systemic exposure (AUC_{0-inf}) of emtricitabine; therefore, emtricitabine may be administered with or without food.

Administration of tenofovir with food increases AUC and C_{max} approximately 35% and 15%, respectively, when administered with a high fat or light meal, compared to administration in the fasted state. In order to optimize the absorption of tenofovir, it is recommended that tenofovir should preferably be taken with food in the European Union, but with or without food in the United States.

Relative to fasting conditions, the administration of a single dose of efavirenz with a standardized high-fat meal increases the rate and extent of absorption of efavirenz. For this reason, efavirenz is to be administered on an empty stomach, preferably at bedtime. Therefore, the fixed combination of emtricitabine/tenofovir/efavirenz should be administered in fasted state.

Efavirenz appears to demonstrate non-linear pharmacokinetics with less than proportional increases in AUC observed with increasing dose, due to very limited solubility.

Guidance for the design of bioequivalence studies:

Taking into account the pharmacokinetic properties of emtricitabine, tenofovir, and efavirenz the following guidance with regard to the study design should be taken into account:

Design: A cross-over design is recommended.

Dose: As per Section 7.4.1.1 of Annex 7, TRS 992, for APIs with non-linear pharmacokinetics within the range of strengths due to limited solubility of the API and resulting in less than proportional increases in AUC with increasing dose, bioequivalence studies should be conducted on at least the lowest strength (or a strength in the linear range) and the highest strength of a series of strengths.
As the EoI includes the fixed combinations of Emtricitabine/Tenofovir disoproxil fumarate/Efavirenz 200mg/300mg/400mg and 200/300/600 mg tablets for adults, both doses need to be tested in an in vivo bioequivalence study due to the non-linearity of efavirenz after the administration of a single dose. The 200mg/300mg/400mg strength should be tested versus the corresponding monocomponents at the same dose level and the 200mg/300mg/600mg strength should be tested versus Atripla.

Fasting/fed: The bioequivalence study should be conducted in the fasting state.

Subjects: Healthy adult subjects should be included in the bioequivalence study(ies). It is not necessary to include patients.

Sample size: Emtricitabine, Tenofovir, and Efavirenz are not highly variable drugs. Information currently available to PQTm indicates that the intra-subject variability for emtricitabine, tenofovir, and efavirenz is around 20-25%. These data may facilitate the calculation of a sufficient sample size for the bioequivalence study.

Washout: Taking into account the elimination half-life of efavirenz in the fasted state of 52–76 h, a washout period of 28–35 days is considered sufficient to prevent carry over.

Blood sampling: The blood sampling should be intensive for the first three (3) hours after administration to properly characterize the C_{max} of emtricitabine and tenofovir, and during the first five (5) hours after administration to properly characterize the C_{max} of efavirenz. Blood samples for the characterization of efavirenz pharmacokinetics should be taken for 72 h post-dose in order to determine truncated AUC values (AUC_{0-72h}). For example, blood samples might be taken at predose, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 8.00, 10.00, 12.00, 24.00, 48.00 and 72.00 h after drug administration.

Analytical considerations: Information currently available indicates that it is possible to measure emtricitabine, tenofovir, and efavirenz in human plasma using LC-MS/MS analytical methodology. The bioanalytical method should be sufficiently sensitive to detect concentrations that are 5% of the C_{max} in most profiles of each formulation (test or comparator).

Parent or metabolite data for assessment of bioequivalence: The parent drug is considered to best reflect the biopharmaceutical quality of the product. The data for the parent compound should be used to assess bioequivalence of emtricitabine and efavirenz. In contrast, for tenofovir tablets contain tenofovir disoproxil fumarate, which is the water soluble diester prodrug of the active ingredient tenofovir. Following absorption, the prodrug is rapidly converted to tenofovir. Therefore, bioequivalence should be based on the determination of tenofovir.
Statistical considerations: The data for emtricitabine, tenofovir, and efavirenz should meet the following bioequivalence standards in a single-dose cross-over design study:

- The 90% confidence interval of the relative mean AUC_{0-t} for emtricitabine and tenofovir and AUC_{0-72h} for efavirenz of the test to reference product should be within 80-125%.

- The 90% confidence interval of the relative mean C_{max} of the test to reference product should be within 80-125%.

Information currently available to PQTm indicates that the comparator products are not highly variable drug products.