Notes on the Design of Bioequivalence Study: Moxifloxacin

Notes on the design of bioequivalence studies with products invited to be submitted to the WHO Prequalification Team – Medicines (PQTm) are issued to aid manufacturers with the development of their product dossier. Deviations from the approach suggested below can be considered acceptable if justified by sound scientific evidence.

Below, additional specific guidance is provided on the invited immediate release products containing moxifloxacin.

Pharmacokinetics of moxifloxacin

Following oral administration moxifloxacin is rapidly and almost completely absorbed. The absolute bioavailability amounts to approximately 91%. Following an oral dose, peak concentrations are reached within 0.5 - 4 h post administration. Moxifloxacin has no clinically relevant interaction with food including dairy products. The tablets may be taken independent of meals. Moxifloxacin is eliminated from plasma with a mean terminal half-life of approximately 12 hours.

Guidance for the design of bioequivalence studies

Taking into account the pharmacokinetic properties of moxifloxacin the following guidance with regard to the study design should be taken into account:

Design: A cross-over design is recommended.

Dose: As the EoI includes moxifloxacin 100 mg dispersible tablets and moxifloxacin 400 mg tablet or capsule, the bioequivalence study should be conducted with these strengths.

The bioequivalence study for the tablet could be waived according to the requirements for Biopharmaceutics Classification System (BCS) biowaivers since moxifloxacin is classified as a BCS class I drug. However, for the capsule and the dispersible tablet a BCS biowaiver is not possible since the comparator product is a tablet.

When conducting bioequivalence studies, it is essential to administer the test and the comparator product according to their corresponding instructions for use. In those cases where the test and the comparator product are different dosage forms with different methods of administration (e.g. a tablet that should be taken with a glass of water, and a dispersible tablet to be dispersed in 10 mL of water) the bioequivalence study should be conducted employing the intended method of administration for each product. It is considered incorrect to standardise the volume of liquid in all these cases (e.g. administering a glass of water after the intake of a dispersible tablet or rinsing the container where a dispersible tablet has been suspended with the remaining liquid of a glass of water) because this standardisation does not occur in real life conditions.
Fasting/fed: The bioequivalence study should be conducted in the fasted state.

Subjects: Healthy adult subjects should be utilized. It is not necessary to include patients in the bioequivalence study.

Sample size: Information currently available to PQTm indicates that the intra-subject variability for moxifloxacin Cmax is around 10-23%. These data may facilitate the calculation of a sufficient sample size for a cross-over bioequivalence study.

Washout: Taking into account the elimination half-life of moxifloxacin in healthy volunteers of 12 hours, a washout period of seven days is considered sufficient to prevent carry over.

Blood sampling: The blood sampling should be intensive for the first hours after administration to properly characterize the Cmax of moxifloxacin. Sampling times beyond 60 hours are not necessary for the quantification of moxifloxacin. For example, blood samples might be taken at predose, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.50, 4.00, 6.00, 8.00, 12.00, 16.00 and 24.00, 36.00, 48.00 and 60.00 hours after drug administration.

Analytical considerations: Information currently available indicates that it is possible to measure moxifloxacin in human plasma using LC-MS/MS analytical methodology. The bioanalytical method should be sufficiently sensitive to detect concentrations that are 5% of the Cmax in most profiles of each formulation (test or comparator).

Parent or metabolite data for assessment of bioequivalence: The parent drug is considered to best reflect the biopharmaceutical quality of the product. The disposition of moxifloxacin should be characterized, and the determination of bioequivalence will be based on the parent compound.

Statistical considerations: The data for moxifloxacin should meet the following bioequivalence standards in a single-dose, crossover design study:

- The 90% confidence interval of the relative mean AUC$_{0-t}$ of the test to reference product should be within 80-125%
- The 90% confidence interval of the relative mean Cmax of the test to reference product should be within 80-125%.