

WHO Prequalification Programme / Vector Control Product Assessment

WHO Public Assessment Report: WHOPAR Part 5

Optica ULV (Clarke International) P-11637

Efficacy Assessment

Contents

4	Efficacy conclusions1	13
	3.2 Indoor applications	11
	3.1 Outdoor applications	.6
3	Small-scale field studies	.6
	2.1 Intrinsic insecticidal activity of the Optica ULV product	.3
2	Laboratory Studies	.3
1	Introduction	.3

WHO Prequalification of Vector Control Products Avenue Appia 20 1211 Geneva 27 Switzerland For further information, contact: pqvectorcontrol@who.int https://extranet.who.int/prequal/vector-control-products ______2

1 Introduction

The primary purpose for the use of a pesticide is the control of a pest, including disease transmitting vectors. Vector control tools, including formulated pesticides, which provide effective management or control of vectors, may be used as part of a resistance management programme. Vector control products for use in public health are a component of Integrated Vector Management (IVM), which is a programme that relies on a suite of diverse interventions and implementations of best practices to manage the vector and chemical/behavioural resistance.

Optica ULV is an ultra-low volume (ULV) liquid containing 1% w/w broflanilide and is intended to be used as a non-thermal aerosol mist for the control of *Aedes* mosquitoes as an outdoor and indoor space spray. The insecticidal mode of action on mosquitoes is through binding to the inter-subunit allosteric site on the insect γ -aminobutyric acid (GABA) receptor, thus inhibiting neurotransmission. The product was tested at 55 - 110 ml/hectare (ha) in outdoor studies and 5.5 – 11.1 ml/1,000 m² in indoor studies, as per the manufacturer's recommended application rate range.

Laboratory studies, and small-scale outdoor and indoor studies to characterize the performance of Optica ULV were submitted to WHO as part of the prequalification dossier.

2 Laboratory Studies

Laboratory studies to characterize the effect of the formulated Optica ULV on *Aedes* spp. were submitted to WHO as part of the prequalification dossier.

Supplementary evidence on the characterization of the formulated Optica ULV product under laboratory conditions was submitted. These data were obtained from studies conducted according to established standards and/or Good Laboratory Practices (GLP).

2.1 Intrinsic insecticidal activity of the Optica ULV product

One supplementary study was presented to characterize the intrinsic insecticidal activity of Optica ULV and determine the LD_{50} and LD_{95} . The endpoint used in the characterisation of the product was 48-hour mortality.

Two *Aedes aegypti* test systems were used in the study: *Aedes aegypti* Rockefeller strain, and *Ae. aegypti* Monterrey strain. The colonised Rockefeller test system was used as an insecticide susceptible reference strain; the Monterrey test system was from the local vector population and carries pyrethroid resistance mediated by *kdr* mutations lle1016 and Cys1534.

The range of concentrations of Optica ULV that were tested in the laboratory study to determine the intrinsic insecticidal activity of the formulated product are presented in Table 1, and the results of the study are presented in Table 2. The LD₅₀ and LD₉₅ results as determined using one *Ae. aegypti* test

WHO Prequalification of Vector Control Products Avenue Appia 20 1211 Geneva 27 Switzerland For further information, contact: pqvectorcontrol@who.int https://extranet.who.int/prequal/vector-control-products

system and topical applications of the formulated Optica ULV product are presented in Table 3. In the intrinsic insecticidal experiments, mortality greater than 90% was observed for all doses greater than 0.19 (μ g/mg) by 48 hours post-exposure. The LD₉₅ for the resistant test system was 0.416 μ g/mg at 48 hours post-exposure.

Table 1. Optica ULV concentrations tested in mortality range finding experiments								
Concentration (µg/mg) Control Dose A Dose B Dose C Dose D Dose E								
Optica ULV	0	0.19	0.37	1.9	3.8	5.58		

Table 2 is presented on page 5.

Table 3. LD₅₀, LD₅₅, and RR50 concentrations of Optica ULV as determined using topical applications against <i>Ae.</i> <i>aegypti</i> Rockefeller and Monterrey test systems.							
Mosquito Strain	Sample size (n)	Timepoint	LD₅₀ µg/mg (95% Cl)	LD₃₅ µg/mg (95% Cl)	RR50 (95% CI)		
Ao, gogupti Dockofollor	F 171	24	0.227 (0.223 – 0.231)	0.599 (0.566 – 0.633)	-		
<i>Ae. aegypti</i> Rockefeller	5,171	48	0.18 (0.179 – 0.182)	0.417 (0.401 – 0.432)	-		
	F 171	24	0.235 (0.229 – 0.241)	0.655 (0.596 – 0.713)	0.599 (0.566 – 0.633)		
<i>Ae. aegypti</i> Monterrey	5,171	48	0.192 (0.191 – 0.194)	0.416 (0.402 – 0.429)	0.417 (0.401 – 0.432)		

For further information, contact: pqvectorcontrol@who.int https://extranet.who.int/prequal/vector-control-products

Table 2. Intrinsic insecticidal activity of Optica ULV against *Ae. aegypti* Rockefeller and Monterrey strains tested using topical applications of formulated product.

Dose	Product concentration				Mean mortality (%, 95% CI)							
(µg/mg)	(μg)	15′	30'	45'	60'	75'	90'	12 h	24 h	48 h		
	1			Ae.	<i>aegypti</i> (Rocke	feller)						
0.19	0.54	0.0	0.0	0.0	0.0	1.9 (1.1 - 2.7)	2.4 (1.4 - 3.3)	24.1 (21.5 - 26.7)	35.6 (32.7 - 38.5)	52.8 (49.8 - 55.8)		
0.37	1.08	0.0	0.0	0.0	0.0	2.6 (1.6 - 3.6)	3.3 (2.2 - 4.4)	45.0 (41.9 - 48.1)	81.8 (79.5 - 84.2)	92.8 (91.1 - 94.4)		
1.9	5.40	76.8 (74.2 - 79.3)	79.3 (76.9 - 81.8)	91.6 (89.9 - 93.3)	100.0	100.0	100.0	100.0	100.0	100.0		
3.8	10.80	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
5.58	16.20	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
				Ae.	<i>aegypti</i> (Monte	errey)						
0.19	0.54	0.0	0.0	0.0	0.0	2.4 (1.5 - 3.3)	2.9 (1.9 - 3.9)	22.6 (20.1 - 25.1)	36.2 (33.3 - 39.1)	50.2 (47.2 - 53.3)		
0.37	1.08	0.0	0.0	0.0	0.0	2.7 (1.7 - 3.7)	3.4 (2.3 - 4.5)	50.3 (47.2 - 53.4)	80.7 (78.2 - 83.1)	93.5 (91.9 - 95.0)		
1.9	5.40	75.5 (72.9 - 78.2)	79.1 (76.6 - 81.6)	92.8 (91.2 - 94.3)	100.0	100.0	100.0	100.0	100.0	100.0		
3.8	10.80	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
5.58	16.20	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		

WHO Prequalification of Vector Control Products Avenue Appia 20 1211 Geneva 27 Switzerland

For further information, contact:

pqvectorcontrol@who.int https://extranet.who.int/prequal/vector-control-product

3 Small-scale field studies

Based on the existing requirements and established decision framework, mosquito mortality is considered the primary endpoint for assessment.

Data on the semi-field performance of Optica ULV were provided. These data were obtained from studies conducted according to established standards and/or Good Laboratory Practices (GLP).

3.1 Outdoor applications

Seven small-scale studies (four primary evidence, three supplementary evidence) were presented to characterize the efficacy of the product in outdoor settings. The primary evidence studies were conducted in Tanzania (Study 1), Malaysia (Study 2) and Brazil (Studies 3 and 4). The supplementary evidence studies were conducted in Mexico (Study 5) and the United States of America (Studies 6 and 7).

In all studies, the product was tested in open areas that contained no obstructions to the spray cloud. The application rates of Optica ULV were 54-55 ml/hectare (ha) (Studies 1, 2, 3, 5, 6), 73 ml/ha (Study 5) and 109-110 ml/ha (Studies 1, 2, 4, 5, 7). The endpoint used to assess the entomological efficacy of the product was 48-hour mortality, assessed using cages of mosquitoes placed at 25, 50, 75 and 100 metres downwind from the spray line (30.5, 61 and 91.5 metres in supplementary studies conducted in the United States of America).

The product was predominantly tested using insecticide susceptible strains of Ae. aegypti and Aedes albopictus, excepting Study 1, in which both insecticide susceptible and insecticide resistant strains of Ae. aegypti were used. The results for the insecticide susceptibility testing of the resistant Ae. aegypti Kinondoni test system are presented in Table 4.

The results for the small-scale outdoor studies are presented in Table 5 (Studies 1-7). In all studies, mortality greater than 90% was observed by 48 hours post-spray at all tested dosages and distances; at 24 hours post-spray, mortality greater than 80% was observed.

tests.						, , ,	
				M24 (9	%, 95% CI)		
Test system	Classification	Permethrin (4%)	Deltamethrin (0.03%)	Alpha- cypermethrin (0.05%)	Lambda- cyhalothrin (0.05%)	Bendiocarb (0.1%)	Pirimiphos methyl (60 mg/m²)
Ae. aegypti	Insecticide	3	28	16	34	97	29
(Kinondoni)	resistant	(0.93-5.07)	(21.24-34.75)	(7.06-24.94)	(18.70-49.30)	(94.93 -99.07)	(19.82-38.17)

Table 4. Insecticide susceptibility testing of Ae. aegypti Kinondoni test system in Tanzania, using WHO cylinder

Table 5. Observed knockdown (KD) and mortality in small-scale outdoor studies conducted using Optica ULV against *Ae. aegypti spp.* in Tanzania, Malaysia, Brazil, Mexico, and The United States of America.

Application	Distance		Mean mortal	ity (%, 95% CI)		Application	Distance		Mean mortal	ity (%, 95% Cl)	
rate (ml/ha)	(m)	KD60*	M12	M24	M48	rate (ml/ha)	(m)	KD60*	M12	M24	M48
		Ae. aegypti (Ba	agamoyo, Tanzan	ia)		Ae. aegypti (Kinondoni, Tanzania, insecticide resistant)					
Control				2 (0 – 4)		Control				2 (0 – 5)	
	25	22 (3 – 37)	100	100	100		25	14 (7 – 22)	99 (99 – 100)	100	100
	50	12 (5 – 19)	98 (95-100)	100 (99 -100)	100		50	14 (0 - 28)	96 (88 – 100)	98 (95 – 100)	100 (99 – 100)
55	75	5 (1 – 9)	96 (91 – 100)	98 (96-100)	99 (97-100)	55	75	9 (2 – 16)	92 (78 – 100)	94 (85 – 100)	99 (96 – 100)
	100	3 (1 – 5)	99 (97 – 100)	100	100	-	100	3 (1 – 5)	100 (99 – 100)	100	100
	Overall	11 (3 - 24)	98 (96 - 101)	100	100		Overall	10 (2 - 18)	97 (91 - 103)	98 (94 - 103)	100
	25	74 (56 – 93)	97 (91 - 1000	100	100		25	62 (46 – 79)	100	100	100
	50	58 (37 – 80)	99 (97 – 100)	100	100		50	35 (17 – 52)	93 (84 – 100)	96 (91 – 100)	100
110	75	34 (21 – 46)	99 (97 – 100)	100 (99 – 100)	100	110	75	13 (3 – 24)	99 (98 – 100)	100	100
	100	31 (13 - 49)	100	100	100		100	9 (3 – 16)	100 (99 – 100)	100	100
	Overall	49 (17 - 82)	99 (97 - 100)	100.0	100.0		Overall	30 (9 - 69)	98 (93 - 100)	99 (96 - 100)	100.0
	Ae. aegypti (VCRU, Malaysia)							Ae. albopic	<i>tus</i> (VCRU, Malaysi	ia)	
Control		0		0		Control		0		0	
	25	7.67 (2.77 - 12.57)	100.0	100.0	100.0		25	5.33 (1.09 - 9.57)	98.33 (96.63 - 100)	99.67 (98.94 - 100)	100.0
55	50	5.33 (1.52 - 9.14)	100.0	100.0	100.0	55	50	3.67 (1.14 - 6.2)	95.67 (86.13 - 100)	99.67 (98.94 - 100)	100.0

WHO Prequalification of Vector Control Products Avenue Appia 20 1211 Geneva 27 Switzerland

For further information, contact:

pqvectorcontrol@who.int https://extranet.who.int/prequal/vector-control-produc

Table 5. Observed knockdown (KD) and mortality in small-scale outdoor studies conducted using Optica ULV against *Ae. aegypti spp.* in Tanzania, Malaysia, Brazil, Mexico, and The United States of America.

Application	Distance		Mean mortal	ity (%, 95% Cl)		Application	Distance		Mean mortal	ity (%, 95% Cl)		
rate (ml/ha)	(m)	KD60*	M12	M24	M48	rate (ml/ha)	(m)	KD60*	M12	M24	M48	
	75	4.33 (0.57 - 9.23)	99.67 (98.94 - 100)	100.0	100.0		75	1.0 (0.15 - 2.15)	98.67 (95.74 - 100)	100.0	100.0	
	100	4.67 (1.64 - 7.7)	98.33 (96.04 - 100)	100.0	100.0	Control	100	2.33 (0.04 - 4.62)	95.33 (92.71 - 97.95)	99.67 (98.94 - 100)	100.0	
	Overall	5.5 (3.59 - 7.41)	99.5 (98.93 - 100)	100.0	100.0		Overall	3.08 (1.76 - 4.4)	97.0 (94.65 - 99.35)	99.75 (99.47 - 100)	100.0	
Control		0		0		Control		0		0		
	25	16.0 (13.58 -18.42)	100.0	100.0	100.0	110	25	14.67 (10.86 -18.48)	100.0	100.0	100.0	
	50	14.0 (11.46- 16.54)	100.0	100.0	100.0		110	50	12.33 (8.66 - 16.0)	100.0	100.0	100.0
110	75	10.67 (7.54 - 13.8)	100.0	100.0	100.0			75	9.67 (7.65 - 11.69)	100.0	100.0	100.0
	100	9.33 (7.07 - 11.59)	99.67 (98.94 - 100)	100.0	100.0		100	8.67 (6.85 - 10.49)	98.0 (95.97 - 100)	100.0	100.0	
	Overall	12.5 (11.11 -13.89)	99.92 (99.75 - 100)	100.0	100.0		Overall	11.33 (9.85 - 12.81)	99.5 (98.98 - 100)	100.0	100.0	
		Aedes aegypti	(Rockefeller, Braz	zil)		Aedes aegypti (United States of America)						
Control		0.0	0.0	0.0	0.5 (0.0 - 1.5)	Control			0.85 (0.51 - 1.19)	1.78 (1.28 - 2.28)	3.5 (2.68 - 4.32)	
	25	7.5 (4.6 - 10.4)	100.0	100.0	100.0		30.5		21.8 (19.1 - 24.5)	76.3 (73.6 - 79.1)	97.0 (95.9 - 98.1)	
	50	11.0 (4.7 - 17.3)	100.0	100.0	100.0		61		17.5 (15.0 - 20.0)	69.3 (66.2 - 72.4)	94.2 (92.6 - 95.7)	
54	75	14.2 (7.8 - 20.7)	100.0	100.0	100.0	54.8	91.5		10.7 (8.6 - 12.7)	59.5 (56.3 - 62.8)	92.3 (90.5 - 94.0)	
	100	12.5 (7.0 - 18.0)	100.0	100.0	100.0							
	Overall	10.1 (7.5 - 12.6)	88.9 (81.6 - 96.2)	88.9 (81.6 - 96.2)	88.9 (81.7 - 96.2)		Overall		16.6 (15.2, - 18.1)	68.4 (66.6 - 70.2)	94.5 (93.6 - 95.4)	

WHO Prequalification of Vector Control Products Avenue Appia 20 1211 Geneva 27 Switzerland For further information, contact: pqvectorcontrol@who.int https://extranet.who.int/prequal/vector-control-products

8

Table 5. Observed knockdown (KD) and mortality in small-scale outdoor studies conducted using Optica ULV against Ae. aegypti spp. in Tanzania, Malaysia, Brazil, Mexico, and The United States of America.

Application	Distance		Mean mortal	ity (%, 95% Cl)		Application	Distance		Mean mortal	ity (%, 95% Cl)			
rate (ml/ha)	(m)	KD60*	M12	M24	M48	rate (ml/ha)	(m)	KD60*	M12	M24	M48		
Control		0.0	0.0	0.0	0.0				2.73 (1.29 - 4.17)	4.65 (2.71 - 6.59)	5.92 (3.57 - 8.27)		
	25	11.0 (5.6 - 16.4)	100.0	100.0	100.0	-	30.5		44.3 (37.9 - 50.7)	78.5 (73.2 - 83.8)	100.0		
	50	5.5 (1.5 - 9.5)	100.0	100.0	100.0		61		62.0 (55.7 - 68.3)	79.9 (74.7 - 85.1)	100.0		
109	75	2.0 (0.4 - 3.6)	100.0	100.0	100.0	109.6	91.5		51.1 (44.6 - 57.7)	82.5 (77.5 - 87.5)	99.1 (97.9 - 100)		
	100	4.8 (2.6 - 6.9)	100.0	100.0	100.0								
	Overall	5.2 (3.4 - 6.9)	88.9 (81.6 - 96.2)	88.9 (81.6 - 96.2)	88.9 (81.6 - 96.2)		Overall		52.5 (48.7 - 56.3)	80.3 (77.3 - 83.3)	99.7 (99.3 - 100)		
		Aedes aegypti (San Lorenzo, Mex	ico)			Aedes aegypti (San Lorenzo, Mexico)						
Control		0	0	0	0	Control		0	0	0	0		
	25	25.0 (21.23 -28.77)	75.67 (71.41 - 9.93)	94.0 (89.47 -98.53)	100.0		25	64.0 (57.06 -70.94)	98.0 (95.97 - 100)	98.33 (96.31 - 100)	100.0		
	50	30.0 (24.32 -35.68)	70.33 (64.65 -76.01)	92.33 (86.86 -97.8)	99.33 (97.86 - 100)		50	55.67 (51.84 - 59.5)	97.33 (95.35 - 99.31)	98.67 (97.01 - 100)	100.0		
55	75	25.33 (19.07 -31.59)	58.33 (49.77 -66.89)	91.0 (87.23 -94.77)	99.67 (98.94 - 100)	110	75	50.0 (43.82 -56.18)	94.33 (91.37 - 97.29)	95.33 (92.11 -98.55)	100.0		
	100	15.67 (8.95 - 22.39)	49.33 (43.07 -55.59)	90.67 (85.91 -95.43)	99.67 (98.94 - 100)		100	61.33 (54.8 - 67.86)	96.0 (94.12 - 97.88)	97.0 (94.8 - 99.2)	100.0		
	Overall	24.0 (21.05 -26.95)	63.42 (59.29 -67.55)	92.0 (89.9 - 94.1)	99.67 (99.27 - 100)		Overall	57.75 (54.66 -60.84)	96.42 (95.34 - 97.5)	97.33 (96.22 -98.44)	100.0		
Control		0	0	0	0								
	25	36.67 (25.26 -48.08)	98.33 (96.63 - 100)	100.0	100.0								
73	50	40.0 (28.79 -51.21)	99.33 (97.86 - 100)	100.0	100.0								
	75	46.33	97.33	99.0	100.0								

WHO Prequalification of Vector Control Products 1211 Geneva 27

For further information, contact: pqvectorcontrol@who.int

9

Table 5. Observed knockdown (KD) and mortality in small-scale outdoor studies conducted using Optica ULV against *Ae. aegypti spp.* in Tanzania, Malaysia, Brazil, Mexico, and The United States of America.

Application	Distance		Application	Distance	Mean mortality (%, 95% CI)						
rate (ml/ha)	Distance (m)	KD60*	M12	M24	M48	rate (ml/ha)	(m)	KD60*	M12	M24	M48
		(34.0 - 58.66)	(95.35 -99.31)	(97.42 - 100)							
	100	32.0 (20.23 -43.77)	96.33 (92.66 - 100)	98.67 (97.01 - 100)	100.0						
	Overall	38.75 (33.36 -44.14)	97.83 (96.73 -98.93)	99.42 (98.88 -99.96)	100.0						

*M1 for studies conducted in Tanzania and Mexico

WHO Prequalification of Vector Control Products Avenue Appia 20 1211 Geneva 27 Switzerland For further information, contact: pqvectorcontrol@who.int https://extranet.who.int/prequal/vector-control-products

10

3.2 Indoor applications

Four small-scale studies (three primary evidence, one supplementary evidence) were presented to characterize the efficacy of the product in indoor settings. The primary evidence studies were conducted in Malaysia (Study 2) and Brazil (Studies 9 and 10) and the supplementary evidence study was conducted in Mexico (Study 5). In all studies, five-room houses were used as testing sites; the negative control in each study was an untreated house. The application rates of Optica ULV were 5.5 ml/1,000 m² (Studies 2, 9 and 5), 7.3 ml/1,000m² (Study 5) and 11 ml/1,000m² (Studies 2, 10 and 5). The endpoint used to assess the entomological efficacy of the product was 48-hour mortality, assessed using cages of mosquitoes placed in test and control houses.

In Study 2, two insecticide susceptible mosquito test systems were used: *Ae. aegypti* and *Ae. albopictus*. In Studies 9 and 10, the mosquito test system used was insecticide susceptible *Aedes aegypti* Rockefeller strain, and in Study 5 the test system was insecticide susceptible *Aedes aegypti* San Lorenzo strain.

The results for the small-scale indoor studies are presented in Table 6 (Studies 2, 5, 9 - 10). In Study 2, <15% knockdown was observed 60 minutes post-exposure and >90% mortality was observed at 12 hours post-exposure for both application dosages and test systems. In Studies 9 and 10, mortality greater than 90% was observed four hours post-spray and 100% mortality was observed by six hours post-spray at all application rates. In Study 5, 100% knockdown was observed one-hour post-spray and 100% mortality was observed at twelve hours post-spray for all application rates.

Table 6. Observed knockdown (KD) and mortality in indoor small-scale studies conducted using Optica ULV against *Ae. aegypti* VCRU, Rockefeller and San Lorenzo strains in Malaysia, Brazil and Mexico and *Ae. albopictus* in Malaysia.

Application rate				Mean m	ortality (%, 95% CI)				
(ml/1,000m²)	KD60	M2	М3	M4	M5	M6	M12	M24	M48
				Ae. aegypti (VCRU	J, Malaysia)				
Control	0.0	-	-	-	-	-	-	-	-
5.5	2.73 (1.61 - 3.85)	-	-	-	-	-	95.93 (94.83 - 97.03)	100	100
11	13.53 (7.6, -19.46)	-	-	-	-	-	99.47 (99.12 - 99.82)	100	100
	1	1		Ae. albopictus (VCR	U, Malaysia)				
Control	0.0	-	-	-	-	-	-	-	-
5.5	3.13 (1.97 - 4.29)	-	-	-	-	-	96.0 (95.07 - 96.93)	100	100
11	7.53 (3.98 - 11.08)	-	-	-	-	-	99.27 (98.82 -99.72)	100	100
				Ae. aegypti (Rocke	feller, Brazil)				
Control	0.0	0.33 (0 -1.76)	0.33 (0 - 1.76)	0.33 (0 - 1.76)	0.33 (0 - 1.76)	0.33 (0 - 1.76)	0.33 (0 - 1.76)	0.33 (0 - 1.76)	0.33 (0 - 1.76)
5.5	40.0 (28.6 - 51.4)	69.0 (45.04 - 92.96)	88.33 (72.36 - 104.3)	97.33 (91.08 - 103.58)	99.33 (96.46 - 102.2)	100.0	100.0	100.0	100.0
11	34.49 (24.07 - 44.91)	70.33 (26.57 - 100)	89.67 (72.76 - 100)	97.67 (96.24 - 99.1)	99.33 (96.46 - 100)	100.0	100.0	100.0	100.0
	Ae. aegypti (San Lorenzo, Mexico)								
Control	0	-	-	-	-	-	0	0	0
5.5	100	-	-	-	-	-	100	100	100
7.3	100	-	-	-	-	-	100	100	100
11	100	-	-	-	-	-	100	100	100

WHO Prequalification of Vector Control Products Avenue Appia 20 1211 Geneva 27 Switzerland

For further information, contact:

pqvectorcontrol@who.int https://extranet.who.int/prequal/vector-control-product

4 Efficacy conclusions

Based on the studies and information provided, all data requirements for the prequalification assessment of product efficacy have been satisfied. These data have been relied upon to assess the intrinsic insecticidal activity in laboratory studies and the impact on caged mosquitoes in small-scale field studies of the proposed product for the purpose of characterising the entomological efficacy of the product.

The efficacy component of the dossier is considered complete, and the assessment of the submitted information on efficacy supports prequalification of the product.

Table 7. List of st	udies related to efficacy submitted to WHO as part of the prequalification dossier								
	Studies that were relied upon for decision making								
Study number	Study title								
BIT106 Report 1	The small-scale outdoor study of CMP132-022 adulticide against susceptible and resistant mosquitoes in Tanzania								
	Ground Ultra-Low Volume Application Field Trials using CMP132-022 as a mosquito adulticide for the control of Aedes aegypti and Aedes albopictus in Penang, Malaysia								
	Efficacy test of CMP 132-022, with space spray application (Outdoor Low Dose), against mosquitoes of the species Aedes aegypti.								
	Efficacy Test of CMP 132-022, with Space Application (Outdoor High Dose), Against Mosquitoes of the Species Aedes aegypti.								
UCBE-UADY-CL- 002	Ground Ultra-Low Volume application to indoor and outdoor field trials using CMP-132-022 as a mosquito adulticide for the control of Aedes aegypti in Merida, Mexico								
	Ground ULV Bioassay against Caged Adult Female <i>Aedes aegypti</i> and/or <i>albopictus</i> Mosquitoes Using CMP132-022								
GBA-1114	Ground ULV Bioassay against Caged Adult Female Aedes aegypti Mosquitoes Using CMP132-022								
ASR0083.0014.23	Efficacy Test of Test Item CMP 132-022, with space spray application (indoor) - ULV, against mosquitoes of the species <i>Aedes aegypti</i>								
ASR0083.0015.23	Efficacy Test of Test Item CMP 132-022, with space spray application (indoor) - ULV, against mosquitoes of the species <i>Aedes aegypti</i>								
-	Assessment of intrinsic toxicity in Aedes aegypti through topical bioassay for CMP 132-022								
	Studies that were not used to inform decision making								
Study number	Study title								
-/- /	Investigation of Blood Feeding Behaviour in <i>Aedes aegypti</i> and <i>Aedes albopictus</i> following Application by Backpack Sprayer.								