<table>
<thead>
<tr>
<th>Part 1</th>
<th>General information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturers details</td>
<td></td>
</tr>
<tr>
<td>Company information</td>
<td></td>
</tr>
<tr>
<td>Name of manufacturer</td>
<td>Zhejiang Langhua Pharmaceutical Co., Ltd.</td>
</tr>
<tr>
<td>Corporate address of manufacturer</td>
<td>21 Jiangxi St., Ningbo City, China Ninhua Group Co., Ltd</td>
</tr>
<tr>
<td>Inspected site</td>
<td></td>
</tr>
<tr>
<td>Address of inspected manufacturing site if different from that given above</td>
<td>No. 7, Donghai 3rd Street, Zhejiang Provincial Chemical and Medical Materials Base Linhai Zone, Linhai, Zhejiang China 317016</td>
</tr>
<tr>
<td>Unit / block / workshop number</td>
<td>Building 3/Workshop 034 Building 11/Workshops 110 and 113 Building 14/All Building 16/Workshop 161</td>
</tr>
<tr>
<td>Manufacturing license number</td>
<td>Zhe 20000303</td>
</tr>
<tr>
<td>Inspection details</td>
<td></td>
</tr>
<tr>
<td>Dates of inspection</td>
<td>16 – 18 May 2016</td>
</tr>
<tr>
<td>Type of inspection</td>
<td>Routine inspection</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Brief summary of the manufacturing activities</td>
<td>Production and quality control of APIs.</td>
</tr>
<tr>
<td>General information about the company and site</td>
<td>Zhejiang Langhua Pharmaceutical Co., Ltd. was formerly held by Sinochem Ningbo Ltd. and in 2015 the holding company changed its name to Ninhua Group Co., Ltd. The Ninhua Group has a diverse range of products including pharmaceuticals, agrochemicals and a HVAC business unit. Zhejiang Langhua Pharmaceutical Co., Ltd. was founded in 1986 as Xinhua Pharma Chemical Co., Ltd. Huangyan Zhejiang, was renamed as Zhejiang Xinhua Pharmaceutical Co., Ltd in 2005, and renamed as Zhejiang Langhua Pharmaceutical Co., Ltd.</td>
</tr>
</tbody>
</table>
The site is located in No. 7, Donghai 3rd Street, Zhejiang Provincial Chemical and Medical Materials Base Linhai Zone, Linhai which is about a 45 minute drive from Taizhou city. The site is approximately 189278m² with buildings occupying approximately 35168 m². There are approximately 532 employees at the site.

Zhejiang Langhua Pharmaceuticals manufactured 4 types of APIs at this site: Quinolone antibiotics (including Levofloxacin), Antivirus (Zidovudine), Cardiovascular and Antidepressant APIs.

The APIs included the inspection scope were Zidovudine and Levofloxacin.

Penicillin APIs and FPPs were no longer produced on the site. There were two previously used Penicillin production buildings: The production of penicillin FPP had been stopped in building 2 and the API production block building 4 had been dismantled.

History

This was the 3rd WHO GMP inspection, the last being in August 2013. The site is regularly inspected by the local CFDA and has also been inspected by ANVISA, EDQM and USFDA. It was stated that these inspections had a positive outcome.

Brief report of inspection activities undertaken

Scope and limitations

Areas inspected

The inspection covered the following sections of the WHO GMP for Active Pharmaceutical Ingredients text:

- Quality management
- Personnel
- Buildings and facilities
- Process equipment
- Documentation and records
- Materials management
- Production and in-process controls
- Packaging and identification labelling of APIs and intermediates
- Storage and distribution
- Laboratory controls
- Validation
- Change control
- Rejection and reuse of materials
- Complaints and recalls
- Contract manufacturers (including laboratories)
Restrictions

<table>
<thead>
<tr>
<th>None</th>
</tr>
</thead>
</table>

Out of scope

<table>
<thead>
<tr>
<th>APIs not included in the scope of the inspection.</th>
</tr>
</thead>
</table>

WHO product numbers covered by the inspection

<table>
<thead>
<tr>
<th>Levofloxacin (APIMF 203)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zidovudine (APIMF167)</td>
</tr>
</tbody>
</table>

Abbreviations

<table>
<thead>
<tr>
<th>AHU</th>
<th>air handling unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALCOA</td>
<td>attributable, legible, contemporaneous, original and accurate</td>
</tr>
<tr>
<td>API</td>
<td>active pharmaceutical ingredient</td>
</tr>
<tr>
<td>APQR</td>
<td>annual product quality review</td>
</tr>
<tr>
<td>BDL</td>
<td>below detection limit</td>
</tr>
<tr>
<td>BMR</td>
<td>batch manufacturing record</td>
</tr>
<tr>
<td>BPR</td>
<td>batch packaging record</td>
</tr>
<tr>
<td>CAPA</td>
<td>corrective actions and preventive actions</td>
</tr>
<tr>
<td>CC</td>
<td>change control</td>
</tr>
<tr>
<td>CFU</td>
<td>colony-forming unit</td>
</tr>
<tr>
<td>CoA</td>
<td>certificate of analysis</td>
</tr>
<tr>
<td>CpK</td>
<td>process capability index</td>
</tr>
<tr>
<td>DQ</td>
<td>design qualification</td>
</tr>
<tr>
<td>EM</td>
<td>environmental monitoring</td>
</tr>
<tr>
<td>FAT</td>
<td>factory acceptance test</td>
</tr>
<tr>
<td>FBD</td>
<td>fluid bed dryer</td>
</tr>
<tr>
<td>FMEA</td>
<td>failure modes and effects analysis</td>
</tr>
<tr>
<td>FPP</td>
<td>finished pharmaceutical product</td>
</tr>
<tr>
<td>FTA</td>
<td>fault tree analysis</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectrometer</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatograph</td>
</tr>
<tr>
<td>GMP</td>
<td>good manufacturing practice</td>
</tr>
<tr>
<td>HACCP</td>
<td>hazard analysis and critical control points</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatograph</td>
</tr>
<tr>
<td>HVAC</td>
<td>heating, ventilation and air conditioning</td>
</tr>
<tr>
<td>IR</td>
<td>infrared spectrophotometer</td>
</tr>
<tr>
<td>IQ</td>
<td>installation qualification</td>
</tr>
<tr>
<td>KF</td>
<td>Karl Fisher</td>
</tr>
<tr>
<td>LAF</td>
<td>laminar air flow</td>
</tr>
<tr>
<td>LIMS</td>
<td>laboratory information management system</td>
</tr>
<tr>
<td>LoD</td>
<td>limit of detection</td>
</tr>
<tr>
<td>LOD</td>
<td>loss on drying</td>
</tr>
<tr>
<td>MB</td>
<td>microbiology</td>
</tr>
<tr>
<td>MBL</td>
<td>microbiology laboratory</td>
</tr>
<tr>
<td>MF</td>
<td>master formulae</td>
</tr>
<tr>
<td>MR</td>
<td>management review</td>
</tr>
<tr>
<td>NRA</td>
<td>national regulatory agency</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance spectroscopy</td>
</tr>
</tbody>
</table>

Zhejiang Langhua Pharmaceutical Co., Ltd.

16 – 18 May 2016

This inspection report is the property of the WHO

Contact: prequalinspection@who.int
Part 2 Brief summary of the findings and comments (where applicable)

Brief summary of the findings and comments
1. Quality management

 Principles
 Responsibilities of the quality Unit(s)
 The Quality Unit was divided into QA and QC with management responsibilities shown in an approved organization chart. Responsibilities were suitably described, including in position descriptions for key staff. The position descriptions reviewed were acceptable.

 Responsibility for production activities
 The structure and management responsibility for production activities was shown in an approved organization chart. Responsibilities were suitably described, including in position descriptions for key personnel. The position descriptions reviewed were acceptable.

 Internal audits (self-inspection)
 Not reviewed during this inspection.

 Product quality review
 Product quality review (PQR) was performed annually according to a SMP. Provided that processes were the same for different grades of API, all batches were included in the same PQR. The general approach was graphic display of results within 3σ, and Cpk where specified. The CAPA procedure was referred to if any action was needed.
The 2015 PQRs for Zidovudine and Levofloxacin APIs was reviewed and generally found satisfactory.

Both PQRs included reviews of critical process parameters, in-process controls, critical starting materials, recovered solvents, and QC test results, OOSs, deviations, changes, stability, returns, complaints and recalls. There had been no recorded returns, complaints or recalls during 2015.

2. Personnel

Personnel qualifications
There were a sufficient number of personnel who were suitably qualified through qualifications, experience and training. Responsibilities were well described, including in position descriptions for all personnel. Position descriptions for selected key staff were reviewed and generally found satisfactory.

Personnel hygiene
Personnel were required to wear protective clothing suitable for the type and stage of manufacturing. Suitable sanitation and change room facilities were provided. Smoking and eating was not permitted in manufacturing areas.

Although the details were not reviewed, it was understood that staff undergo an initial medical examination and this is periodically repeated.

3. Buildings and facilities

Design and construction
The buildings and facilities inspected were designed and constructed to facilitate cleaning, maintenance and operations as appropriate to the type and stage of manufacture. Manufacturing areas provided good space for the placement of equipment.

Utilities
Dedicated HVAC systems provided filtered air to cleanrooms used for final stages of processing to meet requirements for a Grade D environment. Specifications included pressure differentials between clean and non-clean area of at least 10Pа and at least 15 air changes per hour. The Grade D area was regularly monitored for airborne microorganisms and particulates (0.5 and 5.0μ) and also monitored using settle plates and contact plates.

Water
There were two purified water systems on site, installed in two different buildings.

The second PW system which supplied PW to workshops113 and 121 was installed in 2015. It’s Phase I and II qualification had been completed. Phase III qualification was ongoing. The qualification documentation and test data were reviewed and discussed during the inspection.

Containment
Processing took place in closed systems wherever possible. The final synthesis, purification and packaging of Zidovudine took place in dedicated facilities to minimize the likelihood of cross-contamination. The final synthesis, purification and packaging of Levofloxacin took place in facilities shared with the
production of another API which was manufactured infrequently. Production was planned on a campaign basis and cleaning procedures had been validated.

Lighting
The lighting in all warehouses and production areas, and the QC laboratory was considered to be suitable.

Sanitation and maintenance
All areas inspected were clean and appeared to be well maintained.

4. **Process equipment**

 Design and construction
 Equipment used in the manufacture of Levofloxacin and Zidovudine APIs appeared to be of appropriate design and size for its intended use, cleaning and maintenance. Manufacture and material transfer took place in closed systems wherever possible.

 Equipment maintenance and cleaning
 Equipment was maintained according to a SMP which included requirements for preventive maintenance. For each API there was a maintenance plan for applicable equipment. Maintenance for a Levofloxacin dryer was reviewed and the specified requirements, frequency and records were satisfactory.

 Equipment was required to be cleaned according to documented procedures and records maintained. The cleaning procedure and records for a centrifuge was reviewed as an example.

 The operation procedure for a filter was also reviewed and the filter was required to be changed regularly. The replacement register was reviewed and considered acceptable.

 Calibration
 Calibration was performed in house according to documented procedures. Measuring equipment was required to be labelled with its calibration status and all examples viewed were within date.

 Computerized systems
 Computerized systems were not used for material or production control. Computerized systems were used in the QC Laboratory.

5. **Documentation and records**

 Documentation system and specifications
 Activities were generally appropriately documented in SOPs. These were approved and version controlled. All records and other documentation requested during the inspection were readily available.

 Equipment cleaning and use record
 Equipment was required to be cleaned according to documented procedures for each type of equipment. Records were maintained and all equipment viewed appeared to be clean and suitably labelled with cleaning status.
Records of raw materials, intermediates, API labelling and packaging materials
Records of raw materials, intermediates, API labeling and packaging materials were maintained.

Master production instructions (master production and control records)
Approved master production instructions were available.

Batch production records (batch production and control records)
After copying master batch records, they were signed, dated and independently checked by a person in the quality assurance unit before use.

Laboratory control records
Laboratory control records, including a sample receiving and distribution register, and test records, were available for inspection.

Batch production record review
Two examples of completed BMRs were reviewed and found to be satisfactory.

6. Materials management
General controls
Material suppliers were managed according to a SMP. Suppliers were classified as “normal” or “critical” (with some examples) and managed accordingly. The need for on-site audit was described in a matrix of material type and need for audit.

The supplier approval system was generally considered satisfactory and considered re-assessment, regulatory impact and changes to suppliers. An approved list of approved suppliers was available.

Receipt and quarantine
Materials were required to be checked on receipt, including for damage and verifying that the supplier was approved. They were placed in quarantine by cordonning off and labelling the storage location.

Bulk liquids were received from either dedicated tankers or tankers accompanied by a cleaning certificate. A sample from the tanker was taken before delivery through dedicated transfer hoses and the bulk tank placed in quarantine before re-testing.

Sampling and testing of incoming production materials
Production materials were sampled by QC in a designated sampling area and according to a defined sampling plan. The containers sampled were appropriately marked. After testing by QC, materials were released by applying a label to each container. The records viewed were satisfactory.

Storage
Materials were stored in designated areas of the warehouse, depending on the type of material. There was a separate locked area for reject materials.
Re-evaluation
Material release labels included a retest date.

7. Production and in-process controls

Production of Levofloxacin API took place in the different areas according to the manufacturing process.

The involved production areas were inspected and generally found to be of suitable standard, clean and logically organized to suit their intended purpose.

Where required, holding times were specified in the relevant BMR. As an example, the hold time study for a Levofloxacin intermediate, levofloxacin carboxylic acid was reviewed and found satisfactory.

In-process sampling and controls
In-process sampling and testing was performed at defined stages during processing. In-process samples were tested in the QC laboratory.

Blending batches of intermediates or APIs
Blending of Levofloxacin API batch tailings was permitted and performed according to a documented procedure and appeared to be satisfactorily controlled.

Blending validation protocol and report for Zidovudine were reviewed and considered acceptable.

Contamination control
Purification, drying and packaging stages of the production of Levofloxacin took place in non-dedicated facilities.

Production of Zidovudine took place in dedicated facilities.

Adequate precautions to minimize the likelihood of contamination, including final stages taking place in a Grade D controlled environment, were in place.

8. Packaging and identification labelling of APIs and intermediates

General
Packaging materials
Packaging materials were subjected to appropriate quality control testing before release. Non-compliances observed during the inspection that was listed in the full report regarding storage of printed API labels were addressed by the manufacturer to a satisfactory level.

Label issuance and control
Labels were issued according to a documented procedure and appeared to be adequately controlled.
Packaging and labelling operations
Packaging and labelling operations were appropriately described in batch packaging instructions. Line clearance was appropriately recorded.

9. Storage and distribution
 Warehousing procedures
 Finished APIs were stored in a designated warehouse and held in quarantine until released by the Authorized Person. A manual bin card system was used to control stock.

 Distribution procedures
 APIs and intermediates were released for distribution after they had been released by the Quality Unit.

10. Laboratory controls
 General controls
 The company had an organized and suitably equipped QC laboratory. Equipment included HPLC, GC and other testing instruments.

 Testing of intermediates and APIs
 QC testing was conducted as specified in the relevant specification and according to documented test methods. The sample receiving and distribution log book was checked and considered satisfactory.

 Reference standards management procedure was reviewed. Secondary reference standards were prepared against the primary reference standards.

 Validation of analytical procedures
 HPLC equipment were used for assay and RS testing of raw materials, intermediate and APIs. HPLCs and GCs were networked by suitable systems. Access control and authorization of the functions of Lab Solution software and electronic data management procedures were spot checked during the inspection.

 Stability monitoring of APIs
 A range of stability chambers were available. Following initial stability studies to determine re-test date, at least one batch of API per year was required to be placed on on-going stability study.

 Reserve/retention samples
 There was a designated temperature controlled area for storage of retention samples. Retention samples were managed according to a SMP. Retention samples were stored under conditions of 15-25°C and below 70% RH.

 Handling of out of specification (OOS) results
 A procedure for handling OOS was reviewed. Non-compliances observed during the inspection that was listed in the full report regarding investigation of OOS were addressed by the manufacturer to a satisfactory level.
Microbiological testing

Microbiological testing took place in a separate and suitably equipped laboratory adjacent to the main QC laboratory.

Media was prepared in-house according to documented instructions with batch records maintained. Each prepared batch was required to be QC tested, including a growth promotion test. The records of media preparation reviewed were satisfactory.

Purified water testing and environmental monitoring (including particulates) of the Grade D cleanrooms was conducted according to documented procedures. These were reviewed during the inspection and plans and information on sampling locations. The results of water testing and environmental monitoring appeared to be satisfactory.

11. Validation

Validation policy

Validation policy for the whole site was described in a Validation Master Plan (VMP) which was updated annually. The VMP covered all aspects of validation including qualification, processes, test methods, utilities and cleaning. A validation committee with defined members had been formed to coordinate validation activities, with the Quality Director being ultimately responsible.

The VMP for 2016 was reviewed and appeared to be satisfactory.

Validation documentation

Validation protocols for Levofloxacin and Zidovudine APIs had been established to define how each validation would be conducted. Master manufacturing instructions were cross-referenced and critical process steps and acceptance criteria included. A validation report had been prepared for each API with results compared to acceptance criteria and a documented conclusion.

The process validation protocols and associated validation reports for Levofloxacin and Zidovudine APIs were reviewed and generally found satisfactory. Validation records for the manufacture of a batch of Levofloxacin API by blending released tailings was also reviewed and found satisfactory.

Qualification

Qualification of key equipment was a prerequisite for process validation and this was covered in the VMP. Qualification protocols and reports were available for key equipment. These were cross-referenced in the process validation documentation.

Approaches to process validation

Process validation was required to be either prospective or concurrent.

Process validation programme

The 2016 VMP included information on all validation activities conducted during 2015 and a plan for those due during 2016.
Periodic review of validated systems
The status of validated systems was reviewed annually during PQR. Processes were required to be revalidated every 3 years. Validation activities for Levofloxacin and Zidovudine had been conducted within this period.

Cleaning validation
The protocol and report for Levofloxacin cleaning validation were reviewed and generally found satisfactory. Carry over during the whole equipment chain was included as well as worst case sampling locations for each equipment. Diagrams of each equipment included sampling positions. Various methods for calculating maximum carry over were used, but ultimately 10ppm was used as worst case. As some equipment was used to manufacture both Levofloxacin and another API, cleaning validation of this equipment was reviewed and found satisfactory.

Validation of analytical methods
Testing method validation was not reviewed during this inspection due to time constrains.

12. Change control

Change control
Change Control was managed according to a SMP. Several change controls CCs were reviewed. Non-compliances observed during the inspection that was listed in the full report regarding change control were addressed by the manufacturer to a satisfactory level.

Deviation
Deviation was managed according to a SMP and classified into minor, major or critical. Some deviations occurred in 2015 and 2016 were reviewed.

CAPA was managed according to a SMP. The follow up CAPAs related to the above mentioned deviations were found satisfactory in general.

13. Rejection and re-use of materials

Rejection
Rejected APIs or materials were handled according to a SMP. They were required to be identified as such and held in the locked reject warehouse area. Rework was permitted by the procedure, but it was said to have never been done.

Reprocessing and Reworking
Reprocessing and reworking were done according to a SMP. Definitions were included with examples.

Reprocessing was required to be recorded in a supplement to the BMR and a log was maintained. Rework required a new BMR with a distinctive batch number. The change control procedure was used to determine and approve the rework procedure and the need for regulatory approval was considered.
Recovery of materials and solvents

Various solvents were recovered for use in the same step of manufacture only. Documented procedures were in place for solvent recovery. Records were maintained with batch number given and recovered solvent was tested by QC before release. Recovered solvents were stored in separate storage tanks.

The procedure and records for recovery of toluene were selected for review and generally found satisfactory.

Returns

Returns were required to be handled according to a documented procedure.

14. Complaints and recalls

Complaints were handled according to a SOP with responsibilities clearly defined and complaints classified by QA as either reasonable or unreasonable. All complaints were required to be recorded, including the reason for classification. Timelines for processing complaints were clearly specified and the need for immediate action (e.g. recall) considered.

Annual log books of complaints were required to be maintained. There were no recorded complaints for Zidovudine or Levofloxacin APIs.

There was a SOP described requirements for API recall. The composition of a recall team to handle any recall was described. Recalls were required to be classified into 3 levels according to risk with appropriate guidelines for each. There had been no recalls during 2015 and 2016. A mock recall was required to be performed annually and the record of this for 2015 was briefly reviewed.

15. Contract manufacturers (including laboratories)

There was no contract manufacturing of API or key starting materials. One analytical test for Zidovudine was contracted to an external testing lab.

PART 3

Conclusion

Based on the areas inspected, the people met and the documents reviewed, and considering the findings of the inspection, including the deficiencies listed in the Inspection Report, as well as corrective actions taken and planned. Levofloxacin (APIMF 203) and Zidovudine (APIMF167) manufactured at Zhejiang Langhua Pharmaceutical Co., Ltd. located at No. 7, Donghai 3rd Street, Zhejiang Provincial Chemical and Medical Materials Base Linhai Zone, Linhai, Zhejiang China 317016 were considered to be manufactured in compliance with WHO GMP for Active Pharmaceutical Ingredients.

All the non-compliances observed during the inspection that were listed in the full report as well as those reflected in the WHOPIR, were addressed by the manufacturer, to a satisfactory level, prior to the publication of the WHOPIR.

This WHOPIR will remain valid for 3 years, provided that the outcome of any inspection conducted during this period is positive.

PART 4
List of GMP guidelines referenced in the inspection report

 http://www.who.int/medicines/areas/quality_safety/quality_assurance/expert_committee/trs_970/en/

 http://whqlibdoc.who.int/trs/WHO_TRS_929_eng.pdf?ua=1

 http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1

 http://whqlibdoc.who.int/trs/WHO_TRS_937_eng.pdf?ua=1

http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1

http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1

http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1

http://whqlibdoc.who.int/trs/WHO_TRS_943_eng.pdf?ua=1

http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1

http://www.who.int/medicines/areas/quality_safety/quality_assurance/expert_committee/trs_981/en/

http://www.who.int/medicines/areas/quality_safety/quality_assurance/expert_committee/trs_981/en/

http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1

 http://www.who.int/medicines/publications/pharmprep/WHO_TRS_996_annex03.pdf

 http://www.who.int/medicines/publications/pharmprep/WHO_TRS_996_annex05.pdf

 http://www.who.int/medicines/publications/pharmprep/WHO_TRS_996_annex03.pdf