Part 1 General information

Manufacturers Details

<table>
<thead>
<tr>
<th>Company information</th>
<th>Mylan Laboratories Limited-Specialty Formulation Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of manufacturer</td>
<td>Mylan Laboratories Limited-Specialty Formulation Facility</td>
</tr>
</tbody>
</table>
| **Address** | Mylan Laboratories Limited-Specialty Formulation Facility
No. 19A, Plot No. 284/B1,
Bommasandra - Jigani Link Road,
Industrial Area, Anekal Taluk,
Bangalore-560 105, India
GPS details
Latitude: 12.8168
Longitude: 77.6793
Data Universal Numbering System (DUNS): 677605290 |
| Corporate address of manufacturer | Mylan Laboratories Limited
Plot No. 564/A/22, Jubilee Hills,
Hyderabad - 500 034, Telangana, India
Telephone Number: +91-40-30866666, 23550543
Fax Number: 30866699
Site: www.mylanlabs.in |

Inspected site

| Address of inspected manufacturing site if different from that given above | As above |
| Unit / block / plant number | Specialty Formulation Facility (SFF), manufacturing suite 4 |

Manufacturing license number

<table>
<thead>
<tr>
<th>License No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KTK/28/384/2009</td>
<td>Small Volume Parenterals</td>
</tr>
<tr>
<td>KTK/28D/18/2016</td>
<td>Large Volume Parenterals</td>
</tr>
</tbody>
</table>

Inspection details

<table>
<thead>
<tr>
<th>Dates of inspection</th>
<th>10 - 19 September 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of inspection</td>
<td>Initial</td>
</tr>
</tbody>
</table>
Introduction

Brief summary of the manufacturing activities

The main activity is the manufacturing, packaging, labelling, testing and storage of:
- Sterile liquid parenterals in vials (aseptically filled)
- Sterile liquid parenterals in vials (terminally sterilized)
- Sterile lyophilized parenterals in vials
- Sterile liquid parenterals in mini bags (terminally sterilized)

General information about the company and site

No outsourcing and subcontracting activities is carried out from other manufacturing units which are directly related to products supplied by SFF. Mylan has five injectable manufacturing sites located in and around Bangalore, India including SFF site.

History

This was the first WHO inspection.

<table>
<thead>
<tr>
<th>Date</th>
<th>Name of competent authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>USFDA-US</td>
<td>17 Jun 13 to 27 Jun 13</td>
</tr>
<tr>
<td>CDSCO- INDIA</td>
<td>12 Aug 13 to 13 Aug 13</td>
</tr>
<tr>
<td>CDSCO-INDIA</td>
<td>12 Nov 13 to 13 Nov 13</td>
</tr>
<tr>
<td>ANVISA-BRAZIL</td>
<td>08 Sep 14 to 12 Sep 14</td>
</tr>
<tr>
<td>CDSCO-INDIA</td>
<td>16 Sep 14 to 19 Sep 14</td>
</tr>
<tr>
<td>USFDA-US</td>
<td>23 Sep 14 to 03 Oct 14</td>
</tr>
<tr>
<td>TGA-AUSTRALIA</td>
<td>06 Oct 14 to 10 Oct 14</td>
</tr>
<tr>
<td>MCC-SA</td>
<td>17 Nov 14 to 19 Nov 14</td>
</tr>
<tr>
<td>CDSCO- INDIA</td>
<td>03 Nov 15 to 04 Nov 15</td>
</tr>
<tr>
<td>ZAZIBONA</td>
<td>03 Dec 15 to 05 Dec 15</td>
</tr>
<tr>
<td>CDSCO-INDIA</td>
<td>24 Mar 16</td>
</tr>
<tr>
<td>USFDA-US</td>
<td>04 Apr 16 to 13 Apr 16</td>
</tr>
<tr>
<td>CDSCO-INDIA</td>
<td>08 Sep 16</td>
</tr>
<tr>
<td>TGA-AUSTRALIA</td>
<td>21 Nov 16 to 26 Nov 16</td>
</tr>
<tr>
<td>USFDA-US</td>
<td>10 Apr 17 to 18 Apr 17</td>
</tr>
<tr>
<td>Tanzania FDA</td>
<td>17 Jul 17 to 18 Jul 17</td>
</tr>
<tr>
<td>LIBYAN Ministry of Health</td>
<td>09 Sep 17 to 12 Sep 17</td>
</tr>
<tr>
<td>CDSCO-INDIA</td>
<td>27 Nov 17 to 28 Nov 17</td>
</tr>
<tr>
<td>USFDA-US</td>
<td>22 Feb 18 to 02 Mar 18</td>
</tr>
</tbody>
</table>
Scope and limitations

<table>
<thead>
<tr>
<th>Areas inspected</th>
<th>See Part two below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrictions</td>
<td>N/A</td>
</tr>
<tr>
<td>WHO product numbers covered by the inspection</td>
<td>Solutions for Injection for tuberculosis treatment</td>
</tr>
</tbody>
</table>

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADE</td>
<td>acceptable daily exposure</td>
</tr>
<tr>
<td>AHU</td>
<td>air handling unit</td>
</tr>
<tr>
<td>ALCOA</td>
<td>attributable, legible, contemporaneous, original and accurate</td>
</tr>
<tr>
<td>API</td>
<td>active pharmaceutical ingredient</td>
</tr>
<tr>
<td>APQR</td>
<td>annual product quality review</td>
</tr>
<tr>
<td>AQL</td>
<td>acceptance quality limit</td>
</tr>
<tr>
<td>BET</td>
<td>bacterial endotoxin test</td>
</tr>
<tr>
<td>BDL</td>
<td>below detection limit</td>
</tr>
<tr>
<td>BMR</td>
<td>batch manufacturing record</td>
</tr>
<tr>
<td>BPR</td>
<td>batch packaging record</td>
</tr>
<tr>
<td>CAPA</td>
<td>corrective actions and preventive actions</td>
</tr>
<tr>
<td>CC</td>
<td>change control</td>
</tr>
<tr>
<td>CFU</td>
<td>colony-forming unit</td>
</tr>
<tr>
<td>CoA</td>
<td>certificate of analysis</td>
</tr>
<tr>
<td>Cpk</td>
<td>process capability index</td>
</tr>
<tr>
<td>DQ</td>
<td>design qualification</td>
</tr>
<tr>
<td>EM</td>
<td>environmental monitoring</td>
</tr>
<tr>
<td>EU</td>
<td>endotoxin unit</td>
</tr>
<tr>
<td>FAT</td>
<td>factory acceptance test</td>
</tr>
<tr>
<td>FG</td>
<td>finished goods</td>
</tr>
<tr>
<td>FMEA</td>
<td>failure modes and effects analysis</td>
</tr>
<tr>
<td>FPP</td>
<td>finished pharmaceutical product</td>
</tr>
<tr>
<td>FTA</td>
<td>fault tree analysis</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectrometer</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatograph</td>
</tr>
<tr>
<td>GMP</td>
<td>good manufacturing practice</td>
</tr>
<tr>
<td>HACCP</td>
<td>hazard analysis and critical control points</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatograph</td>
</tr>
<tr>
<td>HVAC</td>
<td>heating, ventilation and air conditioning</td>
</tr>
<tr>
<td>ID</td>
<td>identity</td>
</tr>
<tr>
<td>IR</td>
<td>infrared spectrophotometer</td>
</tr>
<tr>
<td>IPC</td>
<td>In process control</td>
</tr>
<tr>
<td>IQ</td>
<td>installation qualification</td>
</tr>
<tr>
<td>KF</td>
<td>Karl Fisher</td>
</tr>
<tr>
<td>LAF</td>
<td>laminar air flow</td>
</tr>
<tr>
<td>LIMS</td>
<td>laboratory information management system</td>
</tr>
<tr>
<td>LoD</td>
<td>limit of detection</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LOD</td>
<td>loss on drying</td>
</tr>
<tr>
<td>M</td>
<td>meter</td>
</tr>
<tr>
<td>MB</td>
<td>microbiology</td>
</tr>
<tr>
<td>MBL</td>
<td>microbiology laboratory</td>
</tr>
<tr>
<td>MF</td>
<td>master formulae</td>
</tr>
<tr>
<td>MR</td>
<td>management review</td>
</tr>
<tr>
<td>NIR</td>
<td>near-infrared spectroscopy</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>NRA</td>
<td>national regulatory agency</td>
</tr>
<tr>
<td>OQ</td>
<td>operational qualification</td>
</tr>
<tr>
<td>Ph. Eur</td>
<td>European Pharmacopoeia</td>
</tr>
<tr>
<td>PHA</td>
<td>preliminary hazard analysis</td>
</tr>
<tr>
<td>PM</td>
<td>preventive maintenance</td>
</tr>
<tr>
<td>Ppk</td>
<td>process performance index</td>
</tr>
<tr>
<td>PQ</td>
<td>performance qualification</td>
</tr>
<tr>
<td>PQR</td>
<td>product quality review</td>
</tr>
<tr>
<td>PQS</td>
<td>pharmaceutical quality system</td>
</tr>
<tr>
<td>PRC</td>
<td>product release certificate</td>
</tr>
<tr>
<td>PW</td>
<td>purified water</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>QCL</td>
<td>quality control laboratory</td>
</tr>
<tr>
<td>QMS</td>
<td>quality management system</td>
</tr>
<tr>
<td>QRM</td>
<td>quality risk management</td>
</tr>
<tr>
<td>RA</td>
<td>risk assessment</td>
</tr>
<tr>
<td>RABS</td>
<td>restricted access barrier system</td>
</tr>
<tr>
<td>RCA</td>
<td>root cause analysis</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>RM</td>
<td>raw materials</td>
</tr>
<tr>
<td>RS</td>
<td>reference standard</td>
</tr>
<tr>
<td>SAP</td>
<td>system applications products for data processing</td>
</tr>
<tr>
<td>SFG</td>
<td>semi-finished goods</td>
</tr>
<tr>
<td>SMS</td>
<td>short message service</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>STP</td>
<td>standard test procedure</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>TAMC</td>
<td>total aerobic microbial count</td>
</tr>
<tr>
<td>TFC</td>
<td>total fungal count</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMC</td>
<td>total microbial count</td>
</tr>
<tr>
<td>TOC</td>
<td>total organic carbon</td>
</tr>
<tr>
<td>UPS</td>
<td>uninterruptible power supply</td>
</tr>
<tr>
<td>URS</td>
<td>user requirements specifications</td>
</tr>
<tr>
<td>USP</td>
<td>United States Pharmacopeia</td>
</tr>
</tbody>
</table>
Part 2 Brief summary of the findings and comments

Brief summary of the findings and comments

1. Pharmaceutical quality system (PQS)
Principle
Production and control operations were specified in written form and GMP requirements were essentially being met. Managerial responsibilities were specified in written job-descriptions. Product and processes were monitored, and the results taken into account during batch release; regular monitoring and reviews of the quality of pharmaceutical products were being conducted according to documented schedules and procedures.
TrackWise system was used for QMS:
- Incidents
- Change controls
- OOS/OOT investigations
- Complaints investigation
- CAPA tracking

Management review (MR)
The SOP “Management review process of site quality council” was briefly discussed. According to the SOP, the Site Quality Council meeting should be conducted monthly. Standard agenda was specified as well as key events, review of previous action items, follow up actions, escalations etc. Annual trends for investigations, CAPAs, change controls, OOS/OOT, complaints and the key elements of the Quality System should be prepared for the period of January to December and should be finalized by the first quarter of the next year. Minutes of Site Quality Council meeting from 7 September 2018 were briefly discussed.

Quality Risk Management (QRM)
The SOP “Quality risk management” was briefly discussed. RA log book for 2017 and 2018 and risk-based prioritization plan for 2018, were briefly discussed. According to the SOP, FMEA was used as the tool for the risk assessments. Several quality risk assessment & managements were briefly discussed:

Product Quality Review (PQR)
The SOP “Annual product review/product quality review” and annual product quality review planner were briefly discussed. According to the SOP, the review period for non-US market and rest of the world market was specified as January to December.

Statistical tools (histogram, control charts, capability analysis) were used to evaluate the process performance. Process capability (Cp/Cpk and Pp/Ppk) was used for all critical in-process testing and/or finished product testing parameters; Cpk target was equal or greater than 1.33.
As an example, PQR for XX Injection USP (10 mg/ml), review period June 2017 - May 2018, was briefly discussed.

Deviations/incidents
The SOP “Incident and investigation management” was briefly discussed. The SOP was applicable to incidents & investigations related to manufacturing, packaging, storage, holding, testing, release and dispatch of products (scale up and commercial manufacturing) and was applicable only to unplanned deviations.

Planned deviations were handled per SOP “Change Management System”.

Investigation reference numbers were reflected in the BMR/BPR. Root cause analysis was explained, and tools used for investigations were specified.
Incidents were classified as:
- Critical
- Minor
- Major

Product impact was classified as:
- Severe
- Major
- Minor
- Negligible

Incidents register for 2018 and trends for the 1st and 2nd quarter were presented to the inspectors; no critical incidents were reported. Trends were performed quarterly and annually. Trends discussed were found to be well organized and detailed.

Several incidents were briefly discussed.

The SOP “Microbiological trend analysis” and number of incidents were briefly discussed

Corrective actions and preventive action (CAPA)
The SOP “Corrective/preventive actions (CAPAs) with effectiveness check” and critical CAPA register 2017 were briefly discussed. CAPAs were classified as:
- Critical
- Non-critical
The SOP was applicable all QMS elements.

Change control (CC)
The SOP “Change management system”, its flow chart and registers for 2017 and 2018 were briefly discussed. Changes were classified as:
- Critical
- Major
- Minor
and
Several major CCs were briefly discussed

Data integrity
The following SOPs were briefly discussed:

- “Data governance program” was briefly discussed. The SOP was applicable to all GxP data
- “Data integrity - Chromatographic data management system”
- “Backup and archival of standalone GMP/GxP systems”, external memory like pen drives were used for weekly/fortnightly and monthly back-ups. Back up data was transferred to the file server located at the site. Online daily, weekly, monthly and yearly automatic backups were transferred to the server located in Hyderabad. Backup registers were presented to the inspectors.
- “System administration of CDMS-Chromeleon”
- “Data restoration of computerized systems”. The SOP was applicable to standalone and network connected systems.
- “Disaster recovery of critical computerized systems”.

Self-inspection
The SOP “Self-inspection” and SOP “Selection criteria for self-inspection auditors” and self-inspection planner - 2018 were briefly discussed. Self-inspection was based on 6 systems and was divided in sub-system-based audits. Laboratory control system, subsystem “Cultures, reagents, media and lot management” were briefly discussed.

Supplier’s qualification
The “Selection and evaluation of vendor”, its flow chart and vendor (APIs and primary packaging materials) audit schedule for 2018 were briefly discussed. SOP was applicable to raw material and packaging material vendors. Vendors were identified by supply chain management. Raw material and primary packaging material vendor audits were performed by the Global operation auditing team. Secondary packaging material vendor audits were performed by the Regional Quality Compliance team.

Approved suppliers list was maintained in SAP system. Approved suppliers list for APIs and packaging materials was presented to inspectors.

Complaints
The SOP “Receipt, logging, investigation and closeout of market complaints” and its flow charts and complaints registers for 2017 and 2018 were briefly discussed. Complaints were trended monthly and quarterly. Presented trends were well organized and extensive. Complaints were classified as:

- Critical - Should be closed within 15 calendar days
- Major - Should be closed within 45 calendar days
- Minor - Should be closed within 45 calendar days

Several complaints investigation files were briefly discussed.

Product recalls
The “Product recall” was briefly discussed. Product defects and typical actions were defined. Recalls were classified as:

- Class I
- Class II
- Class III
- Class IV

Mock recall was performed annually to evaluated procedure effectiveness.

Product returns
The SOP “Handling of returned and salvaged drug products” and its flow chart were briefly discussed.

Out of specification results (OOS)
The SOP “Laboratory investigation report (LIR)” and its flow chart were briefly discussed. The SOP was applicable to all kinds of laboratory incidents related to raw materials, intermediates, APIs, drug products, packaging/labeling, stability testing and aberrant and OOS results.

The SOP “Investigation and handling of out of level results in environmental monitoring” was briefly reviewed. The SOP was applicable for investigation and handling out of level results in viable environmental monitoring.

Several OOS investigation reports were briefly discussed.

Batch release
The SOP “Semi-finished and finished goods batch record review and release”, batch review flow chart and the following check lists:

- BMR review
- BPR review
- Analytical reports review
- Batch release check list

were briefly discussed.

According to the SOP, batch release can only be performed by a Science or Pharmacy graduate with 5 years’ experience in injectable manufacturing.

Several batch manufacturing records and analytical records were briefly discussed.

Personnel
According to the presentation, the site employed approximately 751 full time employees. Personnel were trained in the practices of personal hygiene.

The following SOPs were briefly discussed:

- SOPs “Entry and exit procedure for aseptic processing area” and “Entry and exit of employees into production area”. SOPs were supplemented with detailed gowning procedure photos. Gowning SOP was available in English and Kannada language.
• SOP “Procedure for monitoring of personnel hygiene in production area”. List of qualified personnel for aseptic gowning techniques was presented to the inspectors.
• SOP “Personnel qualification by microbiological methods”. Personnel initial qualification was performed for 3 days within one month; requalification was performed once in a year.
• SOP “Health checkup and monitoring”
• SOP “Management of contract employees”
• SOP “Procedure for health checkup and monitoring”. According to the SOPs, all permanent employees and contract workers should undergo annual medical checkups. According to the SOP, visual inspectors should undergo eye sight tests by ophthalmologist every 6 months.
• SOP “Technical training” and Annual refreshment training planner for Microbiological department. “My University” software was used for training of employees. “My University” was an on-line learning program. Training effectiveness evaluation was by “True” / “False” or multiple-choice questions.
• SOP “Technique Evaluation of an Analyst”. Experienced analysts (having experience before joining), qualification was carried out by analyzing an already approved sample. Analyst had to prepare sample in triplicate. Acceptance criteria were specified. Inexperienced analysts had to prepare 6 replicates of the sample. Acceptance criteria were specified.

Training records of TWO aseptic filling operators were briefly discussed. Training files were maintained by Technical training department. “My University” training of training coordinator in QA was also discussed.

Analyst’s qualification matrix and signature specimens were presented to the inspectors. Signature short and full specimens were available for all employees. Two analyst’s qualification records for HPLC tests were briefly discussed.

2. Documentation system
Documentation system was generally established. Documents related to the manufacture of intermediates and Finished product were prepared, reviewed, approved and distributed according to written procedures. The SOPs were also displayed at appropriate points. The issuance, revision, superseding and withdrawal of documents were controlled with maintenance of revision histories.

Specifications were established for raw materials, packaging materials, intermediates and Finished products. Several specifications were briefly discussed.

3. Production system
Production operations followed defined procedures. Qualifications and validations were performed according to prepared protocols. Significant deviations from the initial protocol were recorded and investigated, root causes were determined and CAPAs were implemented where necessary. Checks on yields and reconciliation of quantities were carried out. Access to production premises was restricted to authorized personnel.

During inspection, XX injection batch No. YY was in progress. Inspectors observed aseptic filling line set up operations and startup of filling operations from the corridor via windows. Open RABS were used for aseptic filling. Environmental monitoring settle plates were exposed for 4 hours during set up of machine and filling process. Active air sampling in grade A was performed once per shift. Particle monitoring was undertaken for the full duration of set up of filling line and filling process. 2 video recording cameras were installed in the manufacturing Suite 4; however, video cameras did not support seeing full process. Before
filling operations started, fill weight checks were automatically carried out for all 8 filling needles. Two types of hand disinfectant bottles were used in grade A and B. Push bottles were used in grade A and spray bottles were used in grade B.

4 types of disinfectants were used for RABS cleaning/disinfection. Disinfectants were changed every 15 days.

The SOP “Operation and cleaning of glove integrity tester within glove box” was briefly discussed. RABS gloves integrity tests - visual and blow test were performed before and after production of each batch. Glove integrity tests were recorded in “Gloves integrity test record logbook” and printouts from auto integrity tester were attached to the product batch manufacturing records.

During site inspection, inspectors visited vial quarantine room No. XX visual inspection area ZZ, secondary packaging area YY and vial automatic inspection room No. AA and media fills incubation walk in chambers.

The SOPs “Operation and calibration of visual inspection table” and “Visual inspection by manual method” were briefly discussed. The filled containers of products were manually inspected for extraneous contamination and other defects. The inspection was carried out under suitable and controlled conditions of illumination. Operators performing the inspection were allowed frequent “eye breaks” (approximately every 1 hour).

All visual inspectors were required to be qualified as per SOP “Qualification and requalification of visual inspectors”. The qualification record for visual inspector AA was checked.

The SOP “Operation and cleaning of labelling and inspection machine” was briefly discussed.

Compounding was carried out in grade C environment. During inspection, XX Injection USP batch No. YY was in-progress. Bulk solution was checked for pH and solution clarity and afterwards released by QC for filtration. Filtration was carried out in grade B environment to avoid bioburden. Solution for bioburden check was collected after the first filtration.

Solution was filtered via two 0.22 μ single use filters. Bubble point test was performed before filtration using WFI and after filtration using the filtered solution. According to the SOP “Cleaning and preparation of air filters and water filters”, air and nitrogen gas were also filtered using 0.22 μ filters.

Hold time studies
The SOP “Hold time establishment and sampling details” was briefly discussed.

4. Facilities and equipment system
Classified clean areas for production of sterile products were designed to minimize potential contamination. Adequate space was provided for orderly placement of equipment and materials to prevent mix-ups. The company had an SOP as the basis for its approach to personal hygiene and sanitation in its production facilities. Microbial monitoring of clean room personnel was performed as part of routine batch control. Generally, the facilities were noted to be clean and well organized during the inspection.
Adequate warehouses were provided for storage of raw materials, packaging materials, and finished goods. During inspection, inspectors visited warehouse No. 1 and warehouse No. 2. Raw materials were sampled in separate sampling rooms under RLAF.

The SOP “Cleaning procedure for stores, sampling, and dispensing area” was briefly discussed.

Temperature mapping
The SOP “Temperature mapping of room/area” and temperature mapping study for finished goods store room protocol and report were briefly discussed.

The SOP “Qualification of laboratory incubators and other storage equipments” and temperature mapping study (re-qualification) protocol and report for walk-in BOD incubator were briefly discussed.

Calibration
Calibration was performed as per SOP “Procedure for calibration of measuring and testing instruments”. Calibration was controlled in SAP. The calibration status of the instruments/gauges used in Suite 4 was checked. Calibration of the magnehelic gauges was performed by an approved external service provider. The service provider was confirmed on the list of external service providers.

The SOP “Cleaning, operation, and performance verification of weighing balance and handling of standard weights” was briefly discussed.

Maintenance
Maintenance was the responsibility of the Facilities and Engineering department. The planned preventive maintenance program was carried out as per the schedules stipulated in the applicable procedures.

The SOP “Procedure for replacement of HVAC LAF tunnel filters and cleaning of pre-filters” was briefly discussed.

The Validation Master Plan was briefly discussed and reflected the key elements of the validation program.

The Corporate Validation Group (CVG) was responsible for performing re-qualifications (RQ). Hence, responsible for the following:
- Preparation and review of RQ protocol
- Execution of RQ protocol
- Compilation and review of RQ report

Autoclave validation
The SOP “Procedure for operational qualification, performance qualification, and requalification of steam sterilizers and bung processors” was briefly discussed. According to the SOP, autoclave re-qualification was carried out every 6 months using two worst-case loads patterns. All four worst-case loads were covered once in a year.

Re-qualification of steam sterilizer protocol and report were briefly discussed. Steam was tested for non-condensable gases, dryness, and superheat before validation. Penetration and distribution temperature sensors
were used. Five pre-vacuum cycles were applied for garments and machine parts sterilisation cycles. 5 in-built T sensors and 16 external (12 penetrations and 4 distributions) sensors were used. Sterilisation cycle for both loads was 121.3 °C for 30 min. T sensors were calibrated before and after validation.

The SOP “Procedure for preventive maintenance (PM) of steam sterilizer” and PM schedule was briefly discussed. PM was performed monthly, quarterly and yearly according to the schedule. PM schedule was presented to the inspectors. Cross checks confirmed that the schedule was followed.

The daily vacuum leak test for the steam sterilizer was performed by production operator as per SOP “Set parameters and load pattern for steam sterilizer”.

Sterilisation tunnel validation
The SOP “Operational qualification, performance qualification and requalification of tunnel sterilizer” and re-qualification of the sterilisation tunnel protocol and report were briefly discussed. According to the SOP, re-qualification was carried out every six months. HEPA filter integrity tests, velocity and non-viable particulate matter were part of the validation. During validation, sterilisation tunnel speed was set up 10mm/minute more than normal speed used by production. T penetration sensors were placed in 10 vials and 10 endotoxin spiked vials were used for beginning, middle and end of the sterilisation run (target 3 log reductions, actual result reports 4 log reductions).

Aseptic process validation
The SOP “Validation of aseptic processing - Media fill” and simulation trial record for a liquid fill process was briefly discussed. Media fills were required to be performed every 6 months ± 30 days. Gamma radiated Soybean Casein Digest medium was used.

Cleaning validation
The SOP “Cleaning validation”, SOP “Sampling procedure during process validation and cleaning validation” and cleaning validation assessment report briefly discussed. Swab and rinse solutions were used for cleaning validation studies. Analytical method was HPLC method. Recovery studies from stainless steel surface were performed before cleaning validation. SOP was based on acceptable daily exposure (ADE) as per EMA guideline.

Computerized system validation
The SOP “Validation of Computerized systems” and Computer System Validation Master Plan” briefly discussed. Computer System Validation followed life cycle approach. Empower validation plan and validation report were briefly discussed.

5. Laboratory control system
The QC function consisted of QC Analytical and QC Microbiology departments.

Sampling
The SOPs “Sampling of non-sterile raw materials - API and Excipient”, “Sampling of miscellaneous materials”, “Sampling of miscellaneous materials” and “Sampling of non-sterile packaging material” were briefly discussed. 100 % sampling was applied for APIs and excipients. Identity tests were performed on each sample. Maximum 10 containers were pooled together for complete analysis.
AQL was applied for vial sampling. Critical, major and minor defects were specified and acceptable AQL levels were applied.

QC Analytical laboratory
During inspection, XX, batch No ZZ, sample No YY analytical raw data was cross checked with equipment log books, standards usage and weighing slips. Assay re-calculations were also done. No discrepancies were observed.

LIMS was used for the collection, processing, recording, reporting, storage and retrieval of test and calibration data.

Analytical balances
According to the company procedure analytical balances were verified daily using 3 standard weights and monthly according to the USP Chapters 41 and 1251. Standard weights and calibration certificates were presented to the inspectors.

HPLC & GC calibration
HPLC and GC calibration was carried out every 6 months by vendor. Calibration schedule was available.

HPLC column usage
A column log was maintained in LIMS.

Reference standards
The SOP “Management of analytical standards” was briefly discussed. Following standard types were specified:
- Pharmacopoeia reference standards
- Manufacturer standards
- In-house standards
- Working standards
- Primary standards

Working standards were qualified against pharmacopoeia reference standards and dispensed in glove box in amber color vials. Depending on substance stability, standards were single used or used within one month. Standards were stored in chambers at room T (below 25 °C), - 20 °C and 2 °C - 8 °C. T in chambers was recorded every 30 minutes, print outs were checked daily. Chambers were equipped with an audible alarm system and connected to the UPS. As a CAPA, chambers will be connected to the Wi-Fi alarm system which generates SMS.

Data integrity
Inspectors requested the Company to export to Excel sheets Chromelion sequence audit trails for submission batches. The submitted files were reviewed and no data integrity issues noted. Selected actions were cross checked. Laboratory incidents and deviations were recorded and were traceable and legible.

Retention samples
The SOP “Management of control samples” was briefly discussed. According to the SOP retention samples should be visually inspected at least once per year according to the monthly inspection schedule. Reserve sample periodic observation sheet from August 1 – August 31, 2018 was presented to the inspectors.
Retention samples were stored in appropriate conditions and in good order. FPP retention samples were stored expiry dates + 1 year, APIs retention samples were stored for 7 years. Maximum expiry date for FPPs was 36 months.

Stability studies

Walk-in stability chambers were visited during inspection. The stability chambers were housed in a separate building. Stability samples were stored in appropriate conditions and in good order. Access to the stability chambers were password controlled. T and RH in chambers was recorded every 30 minutes, print outs were checked daily. Chambers were equipped with audible alarm and Wi-Fi alarm systems (SMS) and connected to the UPS.

QC Microbiology laboratory

The inspector went to the Microbiology laboratory which was separated from the production areas. The Microbiology laboratory was situated on the ground floor and had a separate entry. Access to the Microbiology laboratory was restricted and gowing was required for entry into the Microbiology laboratory. There was a separate air supply to the Microbiology laboratory.

The Microbiology laboratory was responsible for performing the following activities:

- Environmental monitoring
- Microbial assays
- Sterility testing
- Endotoxin testing
- Bioburden testing of raw materials, semi-finished and final products
- Identification of micro-organisms
- Water analysis
- Media and equipment preparation

Sterility testing was carried out in two different areas:

- Carried out in a grade A unidirectional airflow protected zone which was in a clean room with a grade B background
- Carried out within a barrier isolator

Media was prepared both in-house and was also purchased fully prepared. The performance of the media used in the sterility testing of XX was reviewed.

SOP “Microbial cultures management” was reviewed. The strains of microorganisms used for the growth promotion testing of the media was reviewed.

It was confirmed that the working stocks were not more than five generations (passages) from the original reference strain as stipulated in SOP “Microbial cultures management”.

One steam sterilizer was used for the sterilization of media and equipment (miscellaneous). According to SOP “Requalification”, the sterilizers are required to be re-qualified every 6 months. The 6-monthly requalification report was briefly discussed. There was a dedicated sterilizer for the destruction of contaminated waste.

Environmental monitoring of clean area (EM)
The SOPs “Environmental monitoring program in clean rooms and other controlled environments” and “Microbiological trend analyses were briefly discussed. The Environmental Monitoring Data Review Summary Report for the month of July 2018, which included monthly data for the previous 12 months, was briefly discussed.

Microbiological monitoring of PW and WFI
PW and WFI were sampled and tested by the personnel in the Microbiology laboratory as per the defined schedule stipulated in SOP “Monitoring of water for microbiological quality”. Alert and action limits were specified.

Pure steam
The SOP “Sampling and testing of water - chemical” and SOP “Monitoring of water for microbiological quality” were briefly discussed. The SOPs were applicable also for pure steam condensate sampling and testing.

Contract analysis
Several laboratories were used for contract analysis.

Technical agreements
The SOP “Management of technical-quality agreements” was briefly discussed. Technical/Quality agreement for contract testing was briefly discussed.

6. Packaging and labelling system
During inspection inspectors visited secondary packaging room and observed packaging operations of XX ml batch No. YY. Roll labels were used. Packaging line was equipped with label scanning and rejection system. System was challenged before operations started. System challenge was demonstrated to the inspectors.

Packaging Material Specification for glass vials and for rubber closures were briefly discussed.

PART 3
Conclusion – inspection outcome

Based on the areas inspected, the people met and the documents reviewed, and considering the findings of the inspection, including the observations listed in the Inspection Report Mylan Laboratories Limited-Specialty Formulation Facility (manufacturing Suite 4), located at No. 19A, Plot No. 284/B1 Bommasandra - Jigani Link Road, Industrial Area, Anekal Taluk Bangalore-560 105, INDIA was considered to be operating at an acceptable level of compliance with WHO good manufacturing practices for pharmaceutical products.

All the non-compliances observed during the inspection that were listed in the full report as well as those reflected in the WHOPIR, were addressed by the manufacturer, to a satisfactory level, prior to the publication of the WHOPIR.

This WHOPIR will remain valid for 3 years, provided that the outcome of any inspection conducted during this period is positive.
PART 4
List of GMP guidelines used for assessing compliance

 Short name: WHO TRS No. 986, Annex 2

 Short name: WHO TRS No. 961, Annex 6
 http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1
 Short name: WHO TRS No. 957, Annex 2

 Short name: WHO TRS No. 970, Annex 2
 http://www.who.int/medicines/areas/quality_safety/quality_assurance/expert_committee/trs_970/en/

 Short name: WHO TRS No. 929, Annex 4
 http://whqlibdoc.who.int/trs/WHO_TRS_929_eng.pdf?ua=1

 Short name: WHO TRS No. 1010, Annex 8
 http://www.who.int/medicines/areas/quality_safety/quality_assurance/expert_committee/trs_1010/en/

 Short name: WHO TRS No. 937, Annex 4
 http://whqlibdoc.who.int/trs/WHO_TRS_937_eng.pdf?ua=1

 Short name: WHO TRS No. 957, Annex 1

 Short name: WHO TRS No. 957, Annex 2

Mylan Laboratories – Specialty Formulations, Anekal Taluk, India – FPP site
This inspection report is the property of the WHO
Contact: prequalinspection@who.int

Page 17 of 19
 Short name: WHO TRS No. 961, Annex 9
 http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1

 Short name: WHO TRS No. 943, Annex 3
 http://whqlibdoc.who.int/trs/WHO_TRS_943_eng.pdf?ua=1

 Short name: WHO TRS No. 961, Annex 2
 http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1

 Short name: WHO TRS No. 981, Annex 2
 http://www.who.int/medicines/areas/quality_safety/quality_assurance/expert_committee/trs_981/en/

 Short name: WHO TRS No. 981, Annex 3
 http://www.who.int/medicines/areas/quality_safety/quality_assurance/expert_committee/trs_981/en/

 Short name: WHO TRS No. 961, Annex 14
 http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1
 Short name: WHO TRS No. 992, Annex 4

 Short name: WHO TRS No. 992, Annex 5

 Short name: WHO TRS No. 996, Annex 5

 Short name: WHO TRS No. 996, Annex 10