Prequalification Team Inspection services
WHO PUBLIC INSPECTION REPORT
of the Active Pharmaceutical Ingredient (API) Manufacturer

<table>
<thead>
<tr>
<th>Part 1</th>
<th>General information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturers Details</td>
<td></td>
</tr>
<tr>
<td>Company information</td>
<td></td>
</tr>
<tr>
<td>Name of manufacturer and address</td>
<td>Hetero Labs Limited (Unit- III) Survey No. 120&128, 150/1, 151/2, 158/1, 150 (Part) N. Narasapuram (Village), Nallamattipalem (V), Nakkapally (Mandal), Visakhapatnam (Dist.). PIN : 531 081 Andhra Pradesh, INDIA. 17°22’50.70”N 82°43’07.72”E 91-583-8368</td>
</tr>
<tr>
<td>Corporate address of manufacturer</td>
<td>Hetero Corporate 7-2-A2, Industrial Estate, Sanath Nagar, Hyderabad – 500018 Telangana. INDIA. Tel. : 0091-40-23704923 / 24/25 Fax : 0091-40-23704926</td>
</tr>
<tr>
<td>Inspected site</td>
<td></td>
</tr>
<tr>
<td>Address of inspected manufacturing site if different from that given above</td>
<td>As above</td>
</tr>
<tr>
<td>Manufacturing blocks</td>
<td>Production blocks E, I, P, J, Intermediate Drying Section (IDS) - I</td>
</tr>
<tr>
<td>Manufacturing license number</td>
<td>08/VP/AP/2009/B/R</td>
</tr>
<tr>
<td>Inspection details</td>
<td></td>
</tr>
<tr>
<td>Dates of inspection</td>
<td>9 October - 11 October 2017</td>
</tr>
<tr>
<td>Type of inspection</td>
<td>Initial</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Brief summary of the manufacturing activities</td>
<td>The manufacturer was involved in the manufacturing, packaging, labeling, testing and storage of intermediates</td>
</tr>
</tbody>
</table>
General information about the company and site

M/s Hetero Labs Limited was incorporated under the Companies Act. 1956 in the status of limited company. The Company was established to manufacture and market a range of organic intermediates; total captive consumption to Hetero group of companies.

Hetero Labs Limited Unit-III started its functions in 2009. Unit-III has the capability for reactions like Acylation, Addition, Alkylation, Amidation, Amination, Halogenation, Cyanation, Cyclisation, Diazotisation, Enantiomeric Resolution, Esterification, Friedel–Crafts Reactions, Hydrogenation, Halogen exchange, Oxidation, Reduction, Nitration, Peptide Synthesis etc.

Production and in-process control was organized in three shifts covering 24h.

History

This was the first WHO inspection.

The site has been inspected by the following authorities:

<table>
<thead>
<tr>
<th>Authority</th>
<th>Date/s of inspection</th>
<th>Facility/block/unit covered by inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>USFDA</td>
<td>August 2014</td>
<td>Current production in Production Block P, FDA visited HLL-III(A)</td>
</tr>
<tr>
<td>Drug Control Administration, Government of Andhra Pradesh, India</td>
<td>June 2017</td>
<td>Facility</td>
</tr>
<tr>
<td>ISO 9001: 2015</td>
<td>February 2016</td>
<td>Facility</td>
</tr>
<tr>
<td>ISO14001:2015</td>
<td>February 2016</td>
<td>Facility</td>
</tr>
<tr>
<td>OHSAS 18001: 2007</td>
<td>February 2016</td>
<td>Facility</td>
</tr>
<tr>
<td>ISO50001: 2011</td>
<td>February 2016</td>
<td>Facility</td>
</tr>
</tbody>
</table>

Brief report of inspection activities undertaken

Scope and limitations

Areas inspected
- Pharmaceutical Quality System
- Documentation system
- Production System
- Facilities and Equipment System
- Laboratory Control System

Restrictions
N/A

WHO product numbers covered by the inspection
Intermediates for the following APIs
- APIMF 297 Sofosbuvir
- APIMF123 Lamivudine Anhydrous
- APIMF 184 Atazanavir Monosulphate

WHO public inspection report Hetero, Unit-3, October 2017

This inspection report is the property of the WHO
Contact: prequalinspection@who.int
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHU</td>
<td>Air Handling Unit</td>
</tr>
<tr>
<td>ALCOA</td>
<td>attributable, legible, contemporaneous, original and accurate</td>
</tr>
<tr>
<td>AQL</td>
<td>Acceptance quality limit</td>
</tr>
<tr>
<td>API</td>
<td>active pharmaceutical ingredient</td>
</tr>
<tr>
<td>APQR</td>
<td>annual product quality review</td>
</tr>
<tr>
<td>BDL</td>
<td>below detection limit</td>
</tr>
<tr>
<td>BMR</td>
<td>batch manufacturing record</td>
</tr>
<tr>
<td>BPR</td>
<td>batch packaging record</td>
</tr>
<tr>
<td>CAPA</td>
<td>corrective actions and preventive actions</td>
</tr>
<tr>
<td>CC</td>
<td>change control</td>
</tr>
<tr>
<td>CFU</td>
<td>colony-forming unit</td>
</tr>
<tr>
<td>CoA</td>
<td>certificate of analysis</td>
</tr>
<tr>
<td>CpK</td>
<td>process capability index</td>
</tr>
<tr>
<td>DQ</td>
<td>design qualification</td>
</tr>
<tr>
<td>EM</td>
<td>environmental monitoring</td>
</tr>
<tr>
<td>FAT</td>
<td>factory acceptance test</td>
</tr>
<tr>
<td>FBD</td>
<td>fluid bed dryer</td>
</tr>
<tr>
<td>FG</td>
<td>finished goods</td>
</tr>
<tr>
<td>FMEA</td>
<td>failure modes and effects analysis</td>
</tr>
<tr>
<td>FPP</td>
<td>finished pharmaceutical product</td>
</tr>
<tr>
<td>FTA</td>
<td>fault tree analysis</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectrometer</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatograph</td>
</tr>
<tr>
<td>GMP</td>
<td>good manufacturing practice</td>
</tr>
<tr>
<td>HACCP</td>
<td>hazard analysis and critical control points</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatograph</td>
</tr>
<tr>
<td>HVAC</td>
<td>heating, ventilation and air conditioning</td>
</tr>
<tr>
<td>ID</td>
<td>identity</td>
</tr>
<tr>
<td>IR</td>
<td>infrared spectrophotometer</td>
</tr>
<tr>
<td>IPC</td>
<td>In process control</td>
</tr>
<tr>
<td>IQ</td>
<td>installation qualification</td>
</tr>
<tr>
<td>KF</td>
<td>Karl Fisher</td>
</tr>
<tr>
<td>LAF</td>
<td>laminar air flow</td>
</tr>
<tr>
<td>LIMS</td>
<td>laboratory information management system</td>
</tr>
<tr>
<td>LoD</td>
<td>limit of detection</td>
</tr>
<tr>
<td>LOD</td>
<td>loss on drying</td>
</tr>
<tr>
<td>MB</td>
<td>microbiology</td>
</tr>
<tr>
<td>MBL</td>
<td>microbiology laboratory</td>
</tr>
<tr>
<td>MF</td>
<td>master formulae</td>
</tr>
<tr>
<td>MR</td>
<td>management review</td>
</tr>
<tr>
<td>NIR</td>
<td>near-infrared spectroscopy</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>NRA</td>
<td>national regulatory agency</td>
</tr>
<tr>
<td>OQ</td>
<td>operational qualification</td>
</tr>
<tr>
<td>PHA</td>
<td>preliminary hazard analysis</td>
</tr>
<tr>
<td>PM</td>
<td>preventive maintenance</td>
</tr>
</tbody>
</table>
Part 2

Brief summary of the findings and comments (where applicable)

Brief summary of the findings and comments

1. **Pharmaceutical quality system**
 The quality management system was generally well established, documented and implemented; the system encompassed the organizational structure, procedures and processes. QA and QC departments were independent of production. In general, deviations from established procedures were documented and explained.

 The SOP “Data integrity policy” was discussed. SOP training schedule was presented to inspectors.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>PpK</td>
<td>process performance index</td>
</tr>
<tr>
<td>PQ</td>
<td>performance qualification</td>
</tr>
<tr>
<td>PQR</td>
<td>product quality review</td>
</tr>
<tr>
<td>PQS</td>
<td>pharmaceutical quality system</td>
</tr>
<tr>
<td>PW</td>
<td>purified water</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>QCL</td>
<td>quality control laboratory</td>
</tr>
<tr>
<td>QMS</td>
<td>Quality management system</td>
</tr>
<tr>
<td>QRM</td>
<td>quality risk management</td>
</tr>
<tr>
<td>RA</td>
<td>risk assessment</td>
</tr>
<tr>
<td>RCA</td>
<td>root cause analysis</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>RM</td>
<td>raw materials</td>
</tr>
<tr>
<td>RS</td>
<td>reference standard</td>
</tr>
<tr>
<td>SAP</td>
<td>system applications products for data processing</td>
</tr>
<tr>
<td>SFG</td>
<td>semi-finished goods</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>STP</td>
<td>standard test procedure</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>TAMC</td>
<td>total aerobic microbial count</td>
</tr>
<tr>
<td>TFC</td>
<td>total fungal count</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMC</td>
<td>total microbial count</td>
</tr>
<tr>
<td>TOC</td>
<td>Total organic carbon</td>
</tr>
<tr>
<td>URS</td>
<td>user requirements specifications</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet-visible spectrophotometer</td>
</tr>
<tr>
<td>VMP</td>
<td>Validation Master Plan</td>
</tr>
<tr>
<td>WI</td>
<td>water for injection</td>
</tr>
<tr>
<td>WS</td>
<td>working standard</td>
</tr>
</tbody>
</table>
Product Quality Review (PQR)
The corporate SOP “Preparation of annual production product review report (APQR)” was discussed.

Separate APQR was prepared for general systems. APQR was performed annually and according to the SOP should be completed by the end of February of the following year.
Process capability was evaluated by statistical process control (SPC) by Cpk. Process capability was calculated using Minitab software.

APQRs for Sofosbuvir intermediate, Lamivudine Anhydrous intermediate were discussed:

The corporate SOP “Continued process verification” was discussed. Cpk was applicable for the following process parameters:

- Yield
- Quality parameters as:
 - Chromatographic purity by GC
 - Chromatographic purity by HPLC
 - Assay

<table>
<thead>
<tr>
<th>Cpk value</th>
<th>Process capability</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.0</td>
<td>Process is capable</td>
</tr>
<tr>
<td>1.0</td>
<td>Process is just capable</td>
</tr>
<tr>
<td>1.0 – 1.33</td>
<td>Process is quite capable</td>
</tr>
<tr>
<td>>1.33</td>
<td>Process is highly capable</td>
</tr>
</tbody>
</table>

Quality risk management (QRM)
The corporate SOP “Quality risk management” was discussed. The tool used by the company in managing risk was specified as:

- FMEA, scoring numbers were specified from 1-5. FMEA was used for equipment and facilities and could be used to analyze a manufacturing operation and its effect on product process
- HACCP
- HAZOP

“Quality risk assessment report for Sofosbuvir intermediate was discussed.

Deviations
The corporate SOP “Handling deviations and incidents” and register were discussed. The SOP was applicable to all deviations and incidents related to quality system. According to the SOP, deviations and incidents should be trended every three months.

A number of deviations /root cause analysis associated to CAPA reports were discussed.
Laboratory incidents
The corporate SOP “Handling of laboratory incidents” and register were discussed. The SOP was applicable for all laboratory errors occurred during sampling, analysis / calibration or found during online review. Incidents were categorized as:
- Type I – human error
- Type II – malfunction of instruments
- Type III – other errors, for example unexpected UPD/power failure, STP errors, software errors

Root cause investigation
The corporate SOP “Procedure for investigation” was discussed. The following tools were used:
- Brainstorming
- 5 Why’s
- Fishbone diagram

Corrective actions and preventive actions (CAPA)
The corporate SOP “Corrective and preventive actions”, and register for 2017 were discussed. The SOP was applicable but not limited to:
- Deviations
- Incidents
- OOS/OOT
- Complaints
- Recall
- Risk assessments
- Returns
- Or any other actions related to improvements.

CAPA implementation and effectiveness review was performed by QA and reported during management review meetings.

According to the SOP, CAPAs were proposed by cross functional team. CAPA implementation was monitored by QAD personnel.

Change control (CC)
The corporate SOP “Change control, and registers were discussed. CC registers were specific to product and department. Impact assessment and risk evaluation was applied to CC. CCs were categorized as:
- Minor
- Major
- Temporary
- Permanent

CC implementation was reviewed quarterly by QA.

A number CCs (production department) were discussed.
Management review (MR)
The corporate SOP “Management review” was discussed. According to the SOP, management reports were prepared monthly. Standard agenda was specified. MR was to be performed every 3 months. Last MR minutes and schedule were presented to inspectors.

According to the SOP, QAD shall forward the summary report to Head Corporate Quality. Head Corporate Quality reviewed the summary report and provided guidance when required.

Complaints
The corporate SOP “Handling of customer complaints”, its flow chart, register and trends were discussed. Complaints were categorized as:

- Critical
- Major
- Minor
- Established
- Non-established

According to the SOP, complaints should be trended every 3 months. Complaint registers were product related.

Site Deputy General Manager QA (Head QA) was responsible for complaints investigations.

A number of complaint investigation reports were discussed.

Recalls
The corporate SOP “Product recalls” was discussed. There were no product recalls in the site history. Recall effectiveness was evaluated by mock recall. According to the SOP, mock recall should be performed every three years. Site Deputy General Manager QA (Head QA) was responsible for handling recalls. Intermediates were supplied only to site of Hetero Labs and Hetero Drugs API.

Returns
The corporate SOP “Handling of returned goods” and registers were discussed. Registers were product based. A number of returned goods notices were discussed.

Self-inspection
The corporate SOP “Internal audit” and schedule for 2017 were discussed. The following departments were listed under self-inspection programme:

- Warehouse
- Production
- Engineering
- Quality control
- Quality assurance
- Human resources
- Plant R&D
According to the SOP all department should be audited once in six months. Spot checks showed that schedule was followed. Self-inspections were performed using department wise checklists.

Quality control department self-inspection report was discussed. The scope of self-inspection was:
- Receiving and testing samples
- Equipment qualification
- Equipment calibration
- Reference standards / working standards / impurity standards / primary standards
- Retained samples
- Stability samples
- Water samples analysis
- SOPs & records
- General
- Data integrity
 - Instruments
 - Sample set
 - Audit trail

Supplier qualification
The corporate SOP “Vendor qualification” and its flow chart and vendors audit schedule for 2017 were discussed. The SOP was applicable for raw materials, chemical substances, catalysts, reagents, solvents and packaging materials vendors. Approved suppliers list was presented to inspectors.

According to the SOP, API starting materials / intermediate vendors / primary packaging materials vendors should be audited every 3 years. Audits were performed by teams composed of CQA and site QA.

Contracts
Quality Agreement with “BMB vendor “Juangxi Sunfull Chemicals Co Ltd” discussed.

Personnel
The current organization chart of the company was available. The company had sufficient number of personnel with responsibilities according to their respective unit and department.

According to Company’s presentation, the site employed approximately 1065 full time employees:

Personnel were wearing suitable clothing for the manufacturing activities.

The corporate SOP “Training” and GMP training schedule were discussed. According to the SOP, all new recruits should be trained for minimum of 60 working days at the time of joining.

The site SOP “Qualification of analysts in quality control laboratory” was discussed. According to the SOP new analysts as well as analysts under re-qualification were given to analyze approved sample, results were compared. RSD values for triplicate tests were specified. Re-qualification of analysts was performed every 2 years. Analysts’ competency list was presented to inspectors.
The site SOP “Control of contract workmen” was discussed. Contract workmen training module was available in local language.

Mr. XX from production training records was discussed. GMP training records were kept by QA department and on job training records by concerned department.

Staff member from QC department training records for HPLC analysis were discussed.

Executive QC department job description was discussed.

The site SOP “Health check-up of employees” was discussed. The SOP was applicable for Hetero Unit III employees. According to the SOP, all employees should undergo periodical medical examination once in a year.

2. Documentation system
Documentation system was generally well established.

The corporate SOP “Initiation, approval, revision and distribution of procedures” and SOP “Documentation requirements” were discussed. According to the SOP, SOPs were reviewed every 3 years. Documents retention times were specified.

Documents related to the manufacture of intermediates were prepared, reviewed, approved and distributed according to written procedures.

Documents were stored in QA archive in mobile racks.

3. Production system
In general production operations followed defined procedures. Process flows (with IPCs) and routes of synthesis were available. Deviations from procedures were recorded; major deviations were investigated. Access to production premises was restricted to authorized personnel. Weighing and measuring devices were of suitable accuracy for the intended use.

The following production blocs were inspected:

<table>
<thead>
<tr>
<th>Production block</th>
<th>APIMF No</th>
<th>API name</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>APIMF 297</td>
<td>Sofosbuvir</td>
</tr>
<tr>
<td>E</td>
<td>APIMF 123</td>
<td>Lamivudine Anhydrous</td>
</tr>
<tr>
<td>P</td>
<td>APIMF 184</td>
<td>Atazanavir Monosulphate</td>
</tr>
<tr>
<td>J</td>
<td>APIMF 184</td>
<td>Hydrogenation step for Atazanavir Monosulphate</td>
</tr>
</tbody>
</table>

Solvents were delivered in tankers and drums. Samples were taken from tankers, after release solvents were transferred to the storage tanks and mixed with solvent in tank. The site SOP “Receipt, verification, quarantine and sampling of raw materials,” was discussed. According to the SOP, samples from all storage tanks shall be tested in the first week of every month from existing stocks.
Solid starting materials were received and stored in the warehouse No 1, ground floor. Packaging materials and were stored in the same building.

Reprocessing and Reworking
According to the SOP section XX “Re-working should not be done for any failed product obtained during manufacturing process and not in the scope of Hetero’s API manufacturing process.

Reprocessing (RP) was established in corporate ‘SOP’. Unit-III followed the provision in the SOP: “failure batch shall not be subjected for reprocessing by not exceeding three cycles for any similar failure in the same parameter”.

Development unit created procedures for reprocessing and reprocessing master batch records.

The site level SOP on hold time studies was discussed. The SOP had been supplemented in 2017 with a provision stating that in case reprocessing was done on earlier stages of the intermediate synthesis, the final intermediate has to be placed on a hold time study. Hold time after reprocessing was a one-off study for a specific intermediate. PQRs reflected the situation with hold time studies. During the running year, change controls could be tracked for information as stated by the Company; reprocessing was accompanied with a change control report.

Blending
The corporate SOP “Blending” was discussed. Unit-III had created intermediate-specific master records for blending. Blending was subjected to intermediate –specific validation and, in case of RPM change, to re-validation. Unit-III had established validation acceptance criteria (RSD), general to all intermediates, depending on blender capacity. Yearly blending logbooks were maintained for specific intermediates.

The Company stated that Sofosbuvir intermediate had not been subjected to blending.

The site level SOP on “Hold time studies” was discussed. The SOP had been supplemented in 2017 with a provision to initiate hold time studies for blended batches.

Recovery of solvents and mother liquors
The site level “Procedure on usage of recovery solvents / recovered materials” was discussed.

Batch numbering
The corporate SOP “Batch numbering system” was discussed.

4. Facilities and equipment system
Buildings and facilities used in the manufacture of intermediates and APIs were located, designed, and constructed to facilitate cleaning, maintenance and operations as appropriate to the type and stage of manufacture. Facilities were designed to minimize potential contamination. Adequate space was provided for orderly placement of equipment and materials to prevent mix-ups and contamination.

Permanently installed pipework was appropriately identified. Solvents pipelines had different colour codes.
Equipment status boards indicated associated equipment calibration status, due dates and preventive maintenance due dates. Equipment was identified as to its contents and its cleanliness status.

“Temperature mapping study of intermediates warehouse” was discussed. Separate warehouses were provided for storage of solid raw materials, liquid raw materials and finished intermediates. Sampling and dispensing was done in separate rooms in warehouses. Warehouses seen were clean and in good order.

Qualification and Validation

Process Validation

Corporate ‘validation master plan and corporate SOP “Process validation” were discussed. Amendments had been made earlier in 2017 in both documents, including removal of retrospective validation.

Sofosbuvir validation protocol/report was discussed. Cpk calculations were done, as prescribed by the corporate procedure. Routine batch master records had critical operations formatted in ‘bold’, the respective process parameters were reviewed in PQR. The SOP prescribed 3 validation batches should be used in case of KSM change, unless the vendor was already approved by another Hetero site; in the latter case, an equivalence study was to be performed.

The corporate SOP on continuous process verification was discussed.

Cleaning Validation

The corporate SOP was discussed. A carry-over limit for intermediates was established in the SOP.

Practical cleaning procedures were established on the site level. For batch-to-batch cleaning, general SOPs for equipment types (e.g. reactor) as well as intermediates-specific SOPs by particular equipment ID numbers were available.

The site SOP “Cleaning of new equipment” also covered a general product change-over procedure.

In case of product change-over, separate cleaning records were filled in. The cleaning master record was created for each main equipment item. The master record included step-wise instructions; additionally, respective SOPs were available.

In case of batch-to-batch cleaning, the operation was included in the batch record as “equipment cleaning details record” (no step-wise instruction was written in the record itself (SOP was to be followed), solvents were pre-printed / part of the batch master record).

Computer System Validation

The site SOP “Computer systems validation”, effective from 01/09/2017 was available but had not been used till the date of inspection.

LabSolution software validation was performed by vendor on August 2016.
5. Laboratory control system
In process control (IPC) analysis were performed in Quality control laboratory. Incoming samples were recorded in product dedicated sample registers.

The site SOP “Receiving, sampling and testing of samples” was discussed.

HPLCs and GCs were connected to the LabSolutions software, version 6.5. The following instruments were stand alone: UV, FTIR, polarimeter and autotitrator.

The site SOP “Good chromatographic practice”, SOP “Integration procedure for chromatograms” and SOP “Review of audit trails”, were discussed.

The site SOP “Server with LabSolutions software” was discussed. The level of access was divided into 5 levels, section XX described LabSolutions software back-up data schedule. Daily, monthly and yearly back-up register for 2017 was presented to the inspectors.

The site SOP “QA release of intermediates” was discussed. Release was done using a check list.

The site SOP “Working standards” was discussed. Intermediates working standards were stored at 2°C to 8°C, ambient temperature and in freezer.

The site SOP “Retained samples” was discussed. Retained samples were stored until re-test date, afterwards samples were destroyed.

OOS (out of specification), OOT (out of trend)
The corporate SOP “Out of specification results” and SOP “Out of trend results” were discussed. OOS and OOT paper based log books were presented to inspectors. OOS was applied also to raw materials and recovered / distilled solvents.

A number of OOS reports from 2016 were reviewed. Investigative testing had been conducted.

PART 3
Conclusion
Based on the areas inspected, the people met and the documents reviewed, and considering the findings of the inspection including the observations listed in the Inspection Report Hetero Labs Limited (Unit- III, production blocks E, I, J and P) Survey No. 120 & 128, 150/1, 151/2, 158/1, 150 (Part) N. Narasapuram (Village), Nallamattipalem (V), Nakkapally (Mandal), Visakapatnam (Dist.) Andhra Pradesh, INDIA was considered to be operating at an acceptable level of compliance with WHO good manufacturing practices for active pharmaceutical ingredients guidelines.

All the non-compliances observed during the inspection that were listed in the full report as well as those reflected in the WHOPIR, were addressed by the manufacturer, to a satisfactory level, prior to the publication of the WHOPIR.
This WHOPIR will remain valid for 3 years, provided that the outcome of any inspection conducted during this period is positive.

PART 4
List of GMP guidelines used for assessing compliance

 Short name: WHO TRS No. 957, Annex 2

 Short name: WHO TRS No. 986, Annex 2

 Short name: WHO TRS No. 961, Annex 6
 http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1

 Short name: WHO TRS No. 970, Annex 2

 Short name: WHO TRS No. 929, Annex 4
 http://whqlibdoc.who.int/trs/WHO_TRS_929_eng.pdf?ua=1

 Short name: WHO TRS No. 961, Annex 5
 http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1
 Short name: WHO TRS No. 937, Annex 4
 http://whqlibdoc.who.int/trs/WHO_TRS_937_eng.pdf?ua=1

 Short name: WHO TRS No. 957, Annex 1

 Short name: WHO TRS No. 957, Annex 2

 Short name: WHO TRS No. 961, Annex 7
 http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1

 Short name: WHO TRS No. 961, Annex 9
 http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1

 Short name: WHO TRS No. 943, Annex 3
 http://whqlibdoc.who.int/trs/WHO_TRS_943_eng.pdf?ua=1

 Short name: WHO TRS No. 961, Annex 2
 http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1
 Short name: WHO TRS No. 981, Annex 2
 http://www.who.int/medicines/areas/quality_safety/quality_assurance/expert_committee/trs_981/en/

 Short name: WHO TRS No. 981, Annex 3
 http://www.who.int/medicines/areas/quality_safety/quality_assurance/expert_committee/trs_981/en/

 Short name: WHO TRS No. 961, Annex 14
 http://whqlibdoc.who.int/trs/WHO_TRS_961_eng.pdf?ua=1

 Short name: WHO TRS No. 992, Annex 3

 Short name: WHO TRS No. 992, Annex 4

 Short name: WHO TRS No. 992, Annex 5
 Short name: WHO TRS No. 992, Annex 6

 Short name: WHO TRS No. 996, Annex 3

 Short name: WHO TRS No. 996, Annex 5

 Short name: WHO TRS No. 996, Annex 10