
Overview of Antibacterial Agents in Preclinical and Clinical Development

Dr Alexandra Cameron

Senior Expert and Unit Head a.i., Impact Initiatives and Research Coordination, Global Cooperation and Partnerships Department, AMR Division, WHO

WHO annual antibacterial R&D pipeline review

<u>Data collection</u>: literature & desk review, survey, targeted outreach, online data call (preclinical)

Inclusion criteria

New therapeutic entities in clinical and preclinical development worldwide

Traditional (direct-acting small molecules) **and nontraditional antibacterial agents** (antibodies, bacteriophages, lysins, live biotherapeutics oligonucleotides etc.)

Activity - WHO bacterial priority pathogens

- Mycobacterium tuberculosis
- Clostridioides difficile

Innovation assessment

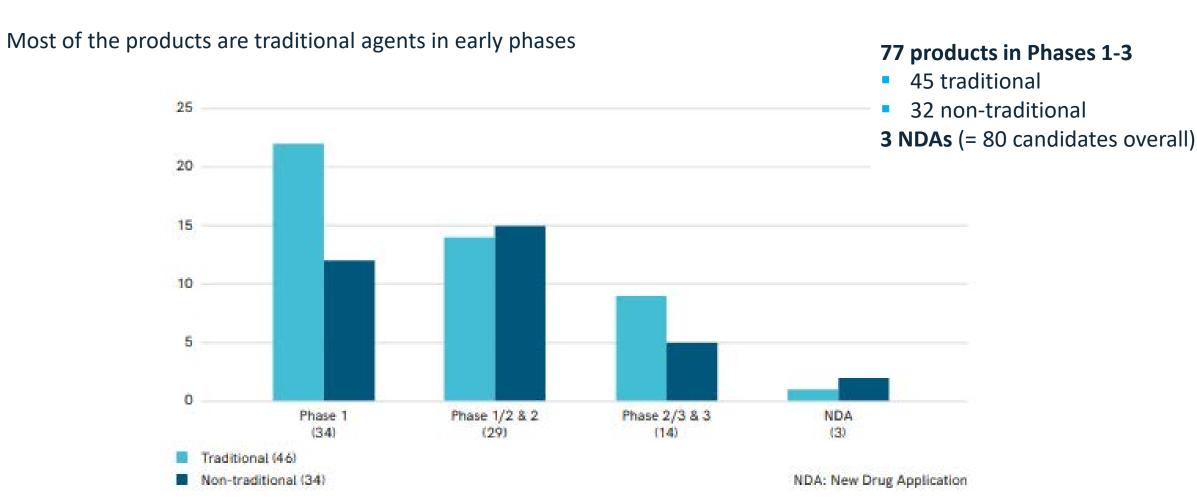
WHO innovation criteria

- Objective: identify products' potential to overcome existing mechanisms of drug resistance
- Applicable to **traditional** agents <u>recently approved</u> and <u>in clinical development</u>

Results: preclinical pipeline

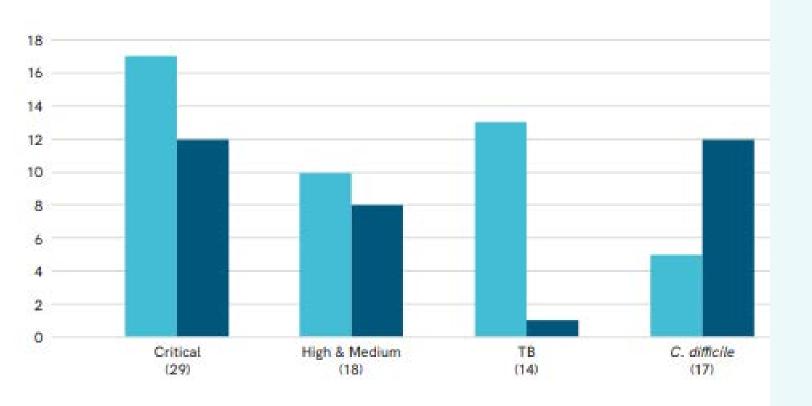
- 217 antibacterial agents/programs are in preclinical stage
- WHO critical pathogens: 69 agents (31.8%) have activity against Pseudomonas aeruginosa, 50 agents (23%) against Acinetobacter baumannii and 28% target key Enterobacterales
- A significant number of products (44%) focus on a single pathogen
- The majority (70%) are being developed as single agents
- The large majority of preclinical developmental research projects are being conducted in Europe and the Americas (mostly the USA and Canada)
- The preclinical pipeline is dominated by companies (n = 103; 85.1%), of which the majority (~80%) have < 50 employees
- From one year to the next, **one third** of development programmes are discontinued

Distribution of declared microbiological activity of speciesspecific programmes by WHO priority pathogen


Organism	Total products*	Species-specific products	WHO PPL
P. aeruginosa	69	21	
A. baumannii	50	8	
E. coli	62	10	Critical
K. pneumoniae	58	4	Critical
Enterobacter spp.	51	1	
Enterobacterales spp.	22	0	
Salmonella spp.	20	0	
N. gonorrhoeae	22	4	
H. pylori	6	1	LIT-de
Campylobacter spp.	6	0	High
S. aureus	74	19	
E. faecium	38	1	
Shigella spp.	18	0	
H. influenzae	14	0	Medium
S. pneumoniae	37	1	
M. tuberculosis	28	20	
C. difficile	20	5	
Not disclosed	9		
Broad G+/G-**	13		
Gram-negative**	3		
Total		95	

Note that products with activity against multiple species will be counted against each species. **Activity against individual bacterial species was not provided.

G+/G-: Gram-positive and Gram-negative bacteria; PPL: priority pathogens list; spp.: species; WHO: World Health Organization.



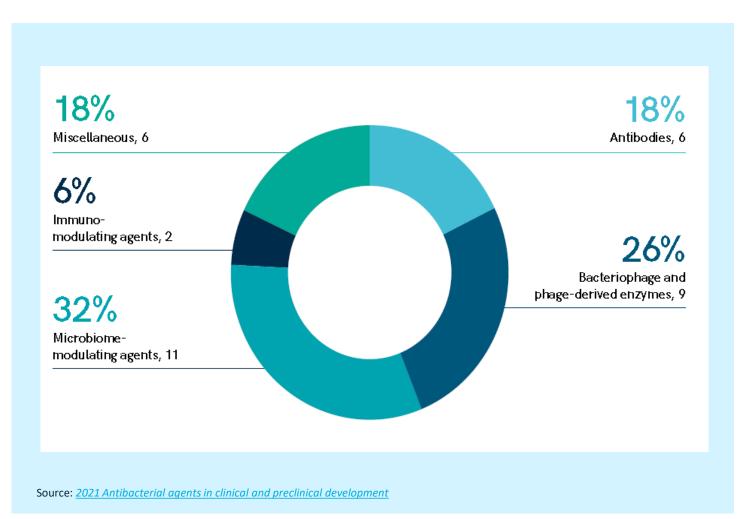
Results: traditional and non-traditional agents in clinical development by clinical development phase (Phases 1–3 and NDAs)

Results: traditional and non-traditional agents in clinical development by intended target

Traditional products: activity

~60% products in Phases 1-3
 against BPP target at least one
 critical Gram-ve pathogen

Critical priorities:


- CRAB =7 candidates
- CRPA = 5 candidates
- CRE = 11 candidates

Other priorities:

- 13 candidates target MDR-TB
- 5 CDIs

Diversity in non-traditional approaches: 34 products

Non-traditional antibacterials present diverse and novel mechanisms of action and most of them are intended for use in combination with standard antibiotics

Development stage

- Most are in early clinical stages
- 2/34 are in NDA stage

Nontraditional products: activity

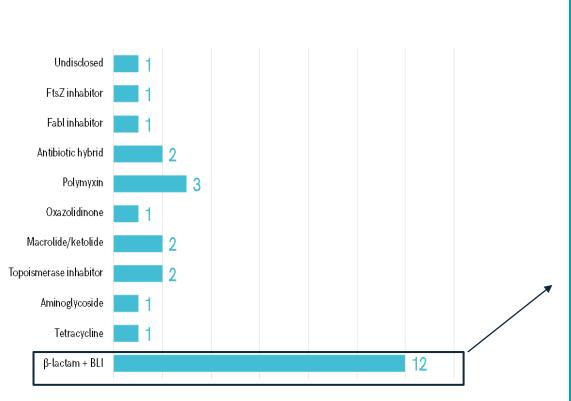
90% pathogen-specific

- P. aeruginosa (13)
- C. difficile (n = 12)
- S. aureus (n = 7)
- E. coli (4)
- One agent targets MDR-TB

Innovation assessment of traditional agents

RECENTLY APPROVED ANTIBIOTICS

- 12 new antibiotics approved in last 5 years
- Belong to existing antibiotic classes
- addresses all critical priority pathogens
- are considered innovative and one is intended against a critical priority


ANTIBIOTICS IN CLINICAL PIPELINE

- Trad. products in Phases 1-3 for BPPs
- fulfil at least 1 of the WHO innovation criteria
- of these six are active against at least one "critical" Gram-negative bacteria

Nearly 50% of antibiotics in clinical pipeline that target priority pathogens are β -lactam/BLI combinations

Activity of the β-lactam/BLI combinations and gaps

BLI: β-lactamase inhibitor; Fab1: enoyl-acyl carrier protein reductase; FtsZ: filamenting temperature-sensitive Z; WHO: World Health Organization.

Source: 2021 Antibacterial agents in clinical and preclinical development

	A ESBL (CTX-M)	A KPC (KPC-2,-3)	D OXA (OXA-48)	B MBL (NDM)	CRAB	CRPA
Vaborbactam + meropenem	•	•	•	0	0	0
Relebactam + imipenem + cilastatin	•	•	•	0	0	?
Cefiderocol	•	•	•	•	•	•
Durlobactam (ETX-2514) + sulbactam	0	0	0	0	•	0
Enmetazobactam (AAI-101) + cefepime	•	?	0	0	0	0
Sulopenem	•	0	0	0	0	0
Taniborbactam (VNRX-5133) + cefepime	•	•	•	•	-	•
Benapenem	0	0	0	0	0	0
Zidebactam + cefepime	•	•	•	?	0	?
ARX-1796 (oral avibactam prodrug)	•	•	•	0	0	0
ETX-0282 + cefpodoxime proxetil	•	•	•	0	0	0
OP0595 (nacubactam) + meropenem	•	•	•	?	0	0
QPX7728 + QPX2014	•	•	•	•	•	•
QPX7728 + QPX2015	•	•	•	•	0	0
XNW4107 + imipenem + cilastatin	?	?	?	?	?	?
VNRX-7145 + ceftibuten	•	•	•	0	0	0

Products recently approved/in clinical development are insufficient to tackle increasing emergence and spread of AMR

- Since 2017, only twelve products have been authorized with 2 considered innovative
- Few candidates in pipeline (27) and few (4) with a novel mechanism of action
- Innovation
 - Few new innovative antibiotics are expected in the coming years with no silver bullets
 - Most traditional agents don't meet the innovation criteria as they are evolutions of existing classes

Target

- Major gap in products addressing MDR pathogens such as A. baumannii and P. aeruginosa
 (one agent authorized against all the critical pathogens and few in the pipeline)
- Very few agents target metallo-β-lactamases which continue to grow in prevalence
- Formulations: appropriate oral formulations and optimized paediatric formulations are lacking

Thank you

Acknowledgements:

Dr Valeria Gigante, Team Lead

Dr Hatim Sati, Technical Officer

Impact Initiatives and Research Coordination, Global Cooperation and Partnerships Department, AMR Division, WHO

