English

System information

For cobas e 411 analyzer: test number 3000
For cobas e 601 and cobas e 602 analyzers: Application Code
Number 737

Intended use

Elecys Anti-SARS-CoV-2 is an immunoassay for the in vitro qualitative detection of antibodies (including IgG) to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in human serum and plasma. The test is intended as an aid in the determination of the immune reaction to SARS-CoV-2.

The electrochemiluminescence immunoassay ‘ECLIA’ is intended for use on cobas e immunoassay analyzers.

Summary

SARS-CoV-2, the causative agent of Coronavirus Disease 2019 (COVID-19), is an enveloped, single-stranded RNA virus of the family Coronaviridae, genus Betacoronaviruses. Viruses of this family share similarities in their genome and organization, including the 4 structural proteins spike (S), envelope (E), membrane (M), and nucleocapsid (N). They cause infections ranging from those of a mild common cold to more severe ones such as the Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS) and COVID-19. Other coronaviruses known to infect humans include 229E, NL63, OC43 and HKU1. These latter are ubiquitous and infection typically causes common cold or flu-like symptoms.1,2,12

SARS-CoV-2 is mainly transmitted person-to-person primarily via respiratory droplets, but indirect transmission through contaminated surfaces is also possible.1,3,4,5 The virus infects host cells via the angiotensin-converting enzyme 2 (ACE2), which is highly expressed in the lungs.6,7,8

The incubation period for COVID-19 is thought to be within 14 days following exposure, with a median incubation period being 4-5 days.3,9,10 The interval during which an individual with COVID-19 is infectious has not yet been clearly established, however, transmission from both symptomatic and asymptomatic individuals has been described.1,9,11,12,13,14,15 Those infected may often exhibit fever and respiratory symptoms.16,17,18 The spectrum of symptoms is sufficiently broad as to hinder definitive diagnosis in the early course of the disease.19,20

Definite COVID-19 diagnosis entails direct detection of SARS-CoV-2 RNA by nucleic acid amplification technology (NAAT).21,22,23 Serological assays, which detect antibodies against SARS-CoV-2, can contribute to identify individuals, which were previously infected by the virus, and to assess the extent of exposure of a population. They might thereby help to decide on application, enforcement or relaxation of containment measures.24

Upon infection with SARS-CoV-2, the host mounts an immune response against the virus, including production of specific antibodies against viral antigens. Understanding the dynamics of the antibody response to the virus is critical in establishing a relevant time window to use serology tests. Both immunoglobulin M (IgM) and G (IgG) have been detected as early as day 5 after symptom onset.25,26 Median seroconversion has been observed at day 10-13 for IgM and day 12-14 for IgG.25,27,28 While maximum levels have been reported at week 2-3 for IgM and week 3-6 for IgG and week 2 for total antibody,25,26,27,28,29,30,31 Whereas IgM seems to vanish around week 6-7,32,33 high IgG seropositivity is seen at that time.34,35,36 While IgM is typically the major antibody class secreted to blood in the early stages of a primary antibody response, levels and chronological order of IgM and IgG antibody appearance seem to be highly variable for SARS-CoV-2.

Anti-SARS-CoV-2 IgM and IgG often appear simultaneously, and some cases have been reported where IgG appears before IgM, limiting its diagnostic utility.26,27,28,34,35

After infection or vaccination, the binding strength of antibodies to antigens increases over time - a process called affinity maturation.37 High-affinity antibodies can elicit neutralization by recognizing and binding specific viral epitopes.37,38 While correlates of immunity/protection to SARS-CoV-2 still need to be identified, neutralization of the virus is presumed to be an important role of antibodies.39 In SARS-CoV-2 infection, antibodies targeting both the spike and nucleocapsid proteins, are formed as early as day 3 onwards, which correlates with a strong neutralizing response, suggesting seroconversion may lead to protection for at least a limited time.34,40,41,42,43 However, more scientific evidence will be necessary to determine if neutralizing antibodies against SARS-CoV-2 confer long-term immunity.

The Elecsys Anti-SARS-CoV-2 assay uses a recombinant protein representing the nucleocapsid (N) antigen in a double-antigen sandwich assay format, which favors detection of high affinity antibodies against SARS-CoV-2. Elecsys Anti-SARS-CoV-2 detects antibody titers, which have been shown to positively correlate with neutralizing antibodies in neutralization assays.34,44

Test principle

Sandwich principle. Total duration of assay: 18 minutes.

- 1st incubation: 20 µL of sample, biotinylated SARS-CoV-2-specific recombinant antigen and SARS-CoV-2-specific recombinant antigen labeled with a ruthenium complex41 form a sandwich complex.
- 2nd incubation: After addition of streptavidin-coated microparticles, the complex becomes bound to the solid phase via interaction of biotin and streptavidin.
- The reaction mixture is aspirated into the measuring cell where the microparticles are magnetically captured onto the surface of the electrode. Unbound substances are then removed with ProCell/ProCell M. Application of a voltage to the electrode then induces chemiluminescence emission which is measured by a photomultiplier.
- Results are determined automatically by the software by comparing the electrochemiluminescence signal obtained from the reaction product of the sample with the signal of the cutoff value previously obtained by calibration.

Reagents - working solutions

The reagent rackpack (M, R1, R2) is labeled as ACOV2.

M Streptavidin-coated microparticles (transparent cap), 1 bottle, 12 mL: Streptavidin-coated microparticles 0.72 mg/mL, preservative.

R1 SARS-CoV-2-Ag-biotin (gray cap), 1 bottle, 16 mL: Biotinylated SARS-CoV-2-specific recombinant antigen (E. coli) < 0.5 mg/L; HEPES® buffer 50 mM/L, pH 7.7, preservative.

R2 SARS-CoV-2-Ag –Ru(bpy)32+ (black cap), 1 bottle, 16 mL: SARS-CoV-2-specific recombinant antigen labeled with ruthenium complex < 0.5 mg/L; HEPES® buffer 50 mM/L, pH 7.7, preservative.

Precautions and warnings

For in vitro diagnostic use.

Exercise the normal precautions required for handling all laboratory reagents.

Disposal of all waste material should be in accordance with local guidelines.

Safety data sheet available for professional user on request.

This kit contains components classified as follows in accordance with the Regulation (EC) No. 1272/2008:

2020-06, V 3.0 English
Elecsys Anti-SARS-CoV-2

Stability of the reagent rackpack

<table>
<thead>
<tr>
<th>Condition</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>unopened at 2-8 °C</td>
<td>up to the stated expiration date</td>
</tr>
<tr>
<td>after opening at 2-8 °C</td>
<td>21 days</td>
</tr>
<tr>
<td>on the analyzers</td>
<td>14 days</td>
</tr>
</tbody>
</table>

Stability of the calibrators

<table>
<thead>
<tr>
<th>Condition</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>unopened at 2-8 °C</td>
<td>up to the stated expiration date</td>
</tr>
<tr>
<td>or after opening at 2-8 °C</td>
<td>72 hours</td>
</tr>
<tr>
<td>on cobas e 411 at 20-25 °C</td>
<td>up to 3 hours</td>
</tr>
<tr>
<td>on cobas e 601 and cobas e 602 at 20-25 °C</td>
<td>use only once</td>
</tr>
</tbody>
</table>

Store calibrators upright in order to prevent the calibrator solution from adhering to the snap-cap.

Specimen collection and preparation

Only the specimens listed below were tested and found acceptable.

- Serum collected using standard sampling tubes or tubes containing separating gel.
- Li-heparin, K$_2$-EDTA and K$_2$-EDTA plasma.
- Li-heparin and K$_2$-EDTA plasma tubes containing separating gel can be used.
- Capillary blood collected in serum, Li-heparin or K$_2$-EDTA sampling tubes.

Criterion: Absolute deviation of negative samples ± 0.3 COI (cutoff index) from serum value; reactive samples: recovery within 70-130 % of serum value.

Stable for 7 days at 15-25 °C. 7 days at 2-8 °C, 28 days at -20 °C (± 5 °C). The samples may be frozen 3 times.

Specimens should not be subsequently altered with additives (e.g. biocides, anti-oxidants or substances that could possibly change the pH or ionic strength of the sample) in order to avoid erroneous findings.

Pooled samples and other artificial material may have different effects on different assays and thus may lead to discrepant findings.

Centrifuge samples containing precipitates before performing the assay.

Do not use heat-inactivated samples.

Do not use samples and controls stabilized with azide.

Ensure the samples, calibrators and controls are at 20-25 °C prior to measurement.

Due to possible evaporation effects, samples and calibrators on the analyzers should be analyzed/measured within 2 hours.

The performance of the Elecsys Anti-SARS-CoV-2 assay has not been established with cadaveric samples or body fluids other than serum and plasma.

Materials provided

See “Reagents – working solutions” section for reagents.

Materials required (but not provided)

- 09216928190, PreciControl Anti-SARS-CoV-2, 4 x 1.0 mL
- 03609987190, Diluent MultiAssay, 2 x 16 mL sample diluent
- General laboratory equipment
- cobas e analyzer

Additional materials for the cobas e 411 analyzer:

- 11662988122, ProcCell, 6 x 380 mL system buffer
- 11662970122, CleanCell, 6 x 380 mL measuring cell cleaning solution
- 11930346122, Elecsys SysWash, 1 x 500 mL washer additive
Elecys Anti-SARS-CoV-2

- 11933159001, Adapter for SysClean
- 11706802001, AssayCup, 60 x 60 reaction cups
- 11706799001, AssayTip, 30 x 120 pipette tips
- 11800507001, Clean-Liner

Additional materials for cobas e 601 and cobas e 602 analyzers:
- 04880340190, ProCell M, 2 x 2 L system buffer
- 04880293190, CleanCell M, 2 x 2 L measuring cell cleaning solution
- 03023141001, PCC/Cups, 12 cups to prewarm ProCell M and CleanCell M before use
- 03005712190, ProbeWash M, 12 x 70 mL cleaning solution for run finalization and rinsing during reagent change
- 12102137001, AssayTip/AssayCup, 48 magazines x 84 reaction cups or pipette tips, waste bags
- 03023150001, WasteLiner, waste bags
- 03027651001, SysClean Adapter M

Additional materials for all analyzers:
- 11298500316, ISE Cleaning Solution/Elecys SysClean, 5 x 100 mL system cleaning solution

Assay

For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator’s manual for analyzer-specific assay instructions.

Resuspension of the microparticles takes place automatically prior to use. Read in the test-specific parameters via the reagent barcode. If in exceptional cases the barcode cannot be read, enter the 15-digit sequence of numbers.

Bring the cooled reagents to approximately 20 °C and place on the reagent disk (20 °C) of the analyzer. Avoid foam formation. The system automatically regulates the temperature of the reagents and the opening/closing of the bottles.

Calibrators:

Place the calibrators in the sample zone.

All the information necessary for calibrating the assay is automatically read into the analyzer.

After calibration has been performed, store the calibrators at 2-8 °C or discard (cobas e 601 and cobas e 602 analyzers).

Calibration

No international standard is available for Anti-SARS-CoV-2.

Calibration frequency: Calibration must be performed once per reagent lot using ACOV2 Cal1, ACOV2 Cal2 and fresh reagent (i.e. not more than 24 hours since the reagent kit was registered on the analyzer).

Calibration interval may be extended based on acceptable verification of calibration by the laboratory.

Renewed calibration is recommended as follows:

- after 25 days when using the same reagent lot
- after 7 days when using the same reagent kit on the analyzer

as required: e.g. quality control findings outside the defined limits

Quality control

For quality control, use PreciControl Anti-SARS-CoV-2.

In addition, other suitable control material can be used.

Alternatively, controls can be prepared as follows:

Negative control: Determine the COI of ACOV2 Cal1 by measuring it as a routine sample. Pool serum samples with a COI result of ≤ 150 % compared to the COI result of ACOV2 Cal1 (pooling of ≥ 5 non-reactive samples in this range is recommended). Mix carefully, avoiding foam formation. Prepare aliquots of at least 250 µl from this sample pool and store frozen at -20 °C (± 5 °C) or colder. Use these aliquots to perform regular quality control.

This negative control has a target value range of COI < 0.8 (qualitative assay result “non-reactive”)

Positive control: Determine the COI of ACOV2 Cal2 by measuring it as a routine sample. Pool serum samples with a COI result that is higher than the COI result of ACOV2 Cal2 (pooling of ≥ 3 reactive samples in this range is recommended). Dilute the sample pool by adding pooled negative serum (pooling criterion see negative control) or Diluent MultiAssay to obtain a COI between 3 and 15. Mix carefully, avoiding foam formation. It is recommend to confirm calculated reactivity after dilution by a measurement. Prepare aliquots of at least 250 µl from this sample pool and store frozen at -20 °C (± 5 °C) or colder. Use these aliquots to perform regular quality control. Upon first use of this control, determine the COI of the control by measurement of the control in triplicate and using a freshly opened reagent rack pack.

The obtained median of these measurements serves as target value for this positive control. Subsequent measurements of all aliquots of this control material must match this target value ± 45 % (3SD = 45 %, 1SD = 15 %; qualitative assay result “reactive”). In case the quality control fails, thaw a new aliquot and re-assess the performance of the assay.

The target value of the positive control is lot specific and target value assessment as described above has to be performed for every assay lot.

After measurement, discard aliquots with a remaining volume of 250 µl or less. Aliquots with a remaining volume of more than 250 µl can be re-used if sealed tightly and stored immediately at 2-8 °C for max. 3 days.

In case quality control fails for any reason, thaw a new control aliquot and re-assess the performance of the assay.

Also pools of plasma samples with similar reactivity can be used, however re-clotting frequently occurs with plasma after thawing. If this occurs, either discard or centrifuge the aliquot before use. Do not mix serum samples and plasma samples to prepare a sample pool.

The control intervals and limits should be adapted to each laboratory’s individual requirements. Values obtained should fall within the defined limits. Each laboratory should establish corrective measures to be taken if values fall outside the defined limits.

Controls for the various concentration ranges should be run individually at least once every 24 hours when the test is in use, once per reagent kit, and following each calibration.

If necessary, repeat the measurement of the samples concerned.

Follow the applicable government regulations and local guidelines for quality control.

Note: The controls should be run like external controls. All values and ranges have to be entered manually. Please refer to the section “QC” in the operator’s manual or to the online help of the instrument software. Only one target value and range for each control level can be entered in the analyzer. The reagent lot-specific target values have to be re-entered each time a specific reagent lot with different control target values and ranges is used.

Two reagent lots with different control target values and ranges cannot be used in parallel in the same run.

Calculation

The analyzer automatically calculates the cutoff based on the measurement of ACOV2 Cal1 and ACOV2 Cal2.

The result of a sample is given either as reactive or non-reactive as well as in the form of a cutoff index (COI: signal sample/cutoff).

Interpretation of the results

Results obtained with the Elecsys Anti-SARS-CoV-2 assay can be interpreted as follows:

<table>
<thead>
<tr>
<th>Numeric result</th>
<th>Result message</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>COI < 1.0</td>
<td>Non-reactive</td>
<td>Negative for anti-SARS-CoV-2 antibodies</td>
</tr>
<tr>
<td>COI ≥ 1.0</td>
<td>Reactive</td>
<td>Positive for anti-SARS-CoV-2 antibodies</td>
</tr>
</tbody>
</table>

The magnitude of the measured result above the cutoff is not indicative of the total amount of antibody present in the sample.

The individual immune response following SARS-CoV-2 infection varies considerably and might give different results with assays from different manufacturers. Results of assays from different manufacturers should not be used interchangeably.
Limitations - interference
The effect of the following endogenous substances and pharmaceutical compounds on assay performance was tested. Interferences were tested up to the listed concentrations and no impact on results was observed.

Endogenous substances

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilirubin</td>
<td>≤ 1129 μmol/L or ≤ 66 mg/dL</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>≤ 1000 mg/dL or ≤ 10 g/L</td>
</tr>
<tr>
<td>Intraipid</td>
<td>≤ 2000 mg/dL</td>
</tr>
<tr>
<td>Biotin</td>
<td>≤ 4912 nmoi/L or ≤ 1200 ng/mL</td>
</tr>
<tr>
<td>Rheumatoid factors</td>
<td>≤ 1200 IU/mL</td>
</tr>
<tr>
<td>IgG</td>
<td>≤ 7.0 g/dL or ≤ 70 g/L</td>
</tr>
<tr>
<td>IgA</td>
<td>≤ 1.6 g/dL or ≤ 16 g/L</td>
</tr>
<tr>
<td>IgM</td>
<td>≤ 1.0 g/dL or ≤ 10 g/L</td>
</tr>
</tbody>
</table>

Criterion: For samples with a COI ≥ 1.0, the deviation is ≤ 20 %. For samples with a COI < 1.0, the deviation is ≤ 0.2 COI.

Potential interferences by pharmaceutical compounds other than biotin have not been tested and an interference cannot be excluded.

No false negative results due to a high-dose hook effect were found with the Elecsys Anti-SARS-CoV-2 assay but occurrence of high-dose hook effect cannot be completely excluded.

In rare cases, interference due to extremely high titers of antibodies to analyte-specific antibodies, streptavidin or ruthenium can occur. These effects are minimized by suitable test design.

For diagnostic purposes, the results should always be assessed in conjunction with the patient's medical history, clinical examination and other findings.

A negative test result does not completely rule out the possibility of an infection with SARS-CoV-2. Serum or plasma samples from the very early (pre-seroconversion) phase can yield negative findings. Therefore, this test cannot be used to diagnose an acute infection. Also, over time, titers may decline and eventually become negative.

Specific performance data
Representative performance data on the analyzers are given below. Results obtained in individual laboratories may differ.

Precision
Precision was determined using Elecsys reagents, samples and controls in a protocol (EP06-A3) of the CLSI (Clinical and Laboratory Standards Institute): 1 run per day for 5 days and 5 determinations per sample. The following results were obtained:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Repeatability</th>
<th>Intermediate precision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean COI</td>
<td>SD COI %</td>
</tr>
<tr>
<td>Human serum 1*</td>
<td>0.063</td>
<td>0.002 2.4</td>
</tr>
<tr>
<td>Human serum 2*</td>
<td>0.052</td>
<td>0.001 2.5</td>
</tr>
<tr>
<td>Human serum 3**</td>
<td>1.16</td>
<td>0.021 1.8</td>
</tr>
<tr>
<td>Human serum 4**</td>
<td>1.22</td>
<td>0.034 2.8</td>
</tr>
<tr>
<td>Human serum 5***</td>
<td>5.02</td>
<td>0.137 2.7</td>
</tr>
<tr>
<td>Human serum 6***</td>
<td>13.4</td>
<td>0.219 1.6</td>
</tr>
<tr>
<td>Human serum 7***</td>
<td>22.4</td>
<td>0.447 2.0</td>
</tr>
<tr>
<td>Human serum 8****</td>
<td>0.664</td>
<td>0.015 2.3</td>
</tr>
<tr>
<td>Human serum 9****</td>
<td>0.689</td>
<td>0.013 1.9</td>
</tr>
<tr>
<td>PC ACOV2 1</td>
<td>0.059</td>
<td>0.002 2.6</td>
</tr>
<tr>
<td>PC ACOV2 2</td>
<td>2.97</td>
<td>0.038 1.3</td>
</tr>
</tbody>
</table>

Analytical specificity
Out of 792 tested samples with potential cross-reactive, 4 samples showed reactivity in the Elecsys Anti-SARS-CoV-2 assay resulting in an overall specificity in this cohort of 99.5 %. Results are shown in the following table:

<table>
<thead>
<tr>
<th>Indication</th>
<th>N</th>
<th>Non-reactive</th>
<th>Reactive</th>
<th>Specificity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common cold panel</td>
<td>40</td>
<td>40</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Coronavirus panel</td>
<td>40</td>
<td>40</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>CMV acute (IgM+ , IgG+)</td>
<td>85</td>
<td>84</td>
<td>1</td>
<td>98.8</td>
</tr>
<tr>
<td>EBV acute (IgM+ , IgG+)</td>
<td>105</td>
<td>103</td>
<td>2</td>
<td>98.1</td>
</tr>
<tr>
<td>Borrelia burgdorferi</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Chlamydia pneumoniae</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>E. coli (anti-E. coli-reactive)</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>HAV acute (IgM+)</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>HAV late (IgG+)</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>HAV vaccinees</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>HBV early acute (HBsAg+, HBeAg+)</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>HBV acute (anti-HBs+)</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>HBV acute (anti-HBc IgM+)</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>HBV chronic</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>HBV vaccinees</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>HCV acute (anti-HCV IgM+)</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
Elecys Anti-SARS-CoV-2

Clinical specificity

A total of 10453 samples were tested with the Elecsys Anti-SARS-CoV-2 assay. All samples were obtained before December 2019. 21 false positive samples were detected. The resulting overall specificity in the internal study was 99.80 %. The 95 % lower confidence limit was 99.69 %.

Sensitivity

A total of 496 samples from 102 symptomatic patients with a PCR confirmed SARS-CoV-2 infection were tested with the Elecsys Anti-SARS-CoV-2 assay. 1 or more consecutive samples from these patients were collected after PCR confirmation at various time points.

Correlation of assay results to serum neutralization capacity

The Elecsys Anti-SARS-CoV-2 assay was compared to a VSV^H^N-based pseudo-neutralization assay.46 The results for 46 clinical samples from individual patients are summarized in the following table:

References

Elecys Anti-SARS-CoV-2

For further information, please refer to the appropriate operator's manual for the analyzer concerned, the respective application sheets, the product information and the Method Sheets of all necessary components (if available in your country).

A point (period/stop) is always used in this Method Sheet as the decimal separator to mark the border between the integral and the fractional parts of a decimal numeral. Separators for thousands are not used.

Symbols
Roche Diagnostics uses the following symbols and signs in addition to those listed in the ISO 15223-1 standard (for USA: see dialog.roche.com for definition of symbols used):

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>Contents of kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM</td>
<td>Analyzers/Instruments on which reagents can be used</td>
</tr>
<tr>
<td>REAGENT</td>
<td>Reagent</td>
</tr>
<tr>
<td>CALIBRATOR</td>
<td>Calibrator</td>
</tr>
<tr>
<td>STIN</td>
<td>Volume after reconstitution or mixing</td>
</tr>
</tbody>
</table>

GLOBAL TRADE ITEM NUMBER

COBAS, COBAS E and ELECSYS are trademarks of Roche.
All other product names and trademarks are the property of their respective owners.
Additions, deletions or changes are indicated by a change bar in the margin.
© 2020, Roche Diagnostics

Roche Diagnostics GmbH, Sandhofer Strasse 116, D-68305 Mannheim
www.roche.com