Notes on the design of bioequivalence study: Ritonavir

Pharmacokinetics of ritonavir

After oral administration, ritonavir peak plasma concentrations are observed after approximately 3–4 hours. Ritonavir is metabolized by the hepatic cytochrome P450 system, primarily by the CYP3A isozyme family and to a lesser extent by the CYP2D6 isoform. Low doses of ritonavir have shown profound effects on the pharmacokinetics of other protease inhibitors (and other products metabolized by CYP3A4), and other protease inhibitors may influence the pharmacokinetics of ritonavir. Ritonavir demonstrates nonlinear pharmacokinetics with greater than dose-proportional increases in AUC. Ritonavir elimination half-life has been reported to be 5 – 6 hours. Food slightly decreases the bioavailability of the tablet. Administration of a single 100 mg dose of ritonavir tablet with a moderate fat meal (857 kcal, 31% calories from fat) or a high fat meal (907 kcal, 52% calories from fat) was associated with a mean decrease of 20-23% in ritonavir AUC and Cmax.

Guidance for the design of bioequivalence studies:

Taking into account the pharmacokinetic properties of ritonavir, the following guidance with regard to the study design should be taken into account:

Study design: A single-dose cross-over design is recommended.

Dose: The EoI includes tablets of 25 and 100 mg and pellets of 25 mg. The bioequivalence study should be conducted with the highest strength of the tablets if both strengths are developed and the conditions for an additional strength biowaiver are fulfilled, and with the 25 mg strength if pellets are developed.

Fasted/fed: As the comparator product should be taken with food, a fed state study is recommended. Ritonavir tablets should be administered with a high-fat high-calorie meal. Ritonavir pellets should be poured on soft food (apple sauce or vanilla pudding).

Subjects: Healthy volunteers should be recruited. It is not necessary to include patients in the bioequivalence study.
Parent or metabolite data for assessment of bioequivalence: The parent drug is considered to best reflect the biopharmaceutical quality of the product. Therefore, bioequivalence should be based on the determination of the parent compound ritonavir.

Sample size: Ritonavir pharmacokinetic parameters, C_{max} and $AUC_{0\text{-}t}$, in the fed state seem to possess high variability (17 – 42%) in some studies. This data may facilitate the calculation of a sufficient sample size for a single-dose cross-over bioequivalence study.

Washout: Taking into account the elimination half-life of ritonavir of 6 – 8 h, a washout period of seven days is considered sufficient to prevent carry over.

Blood sampling: The blood sampling should be intensive for the first 6 hours after administration to properly characterize the C_{max} of ritonavir. It is not necessary to take blood samples beyond 36 hours for the characterization of ritonavir pharmacokinetics. For example, samples can be taken pre-dose and at 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25, 4.50, 4.75, 5.00, 5.25, 5.50, 5.75, 6.00, 8.00, 10.00, 12.00, 24.00 and 36.00 h after drug administration.

Analytical considerations: Information currently available to PQT/MED indicates that it is possible to measure ritonavir in human plasma using LC-MS/MS analytical methodology. The bioanalytical method should be sufficiently sensitive to detect concentrations that are 5% of the C_{max} in most profiles of each formulation (test or comparator).

Statistical considerations: The data for ritonavir should meet the following bioequivalence standards in a single-dose cross-over design study:

- The 90% confidence interval of the relative mean $AUC_{0\text{-}t}$ of the test to reference product should be within 80.00 – 125.00%
- The 90% confidence interval of the relative mean C_{max} of the test to reference product should be within 80.00 – 125.00%.