S3-Leitlinie Diagnostik, Therapie und Nachsorge des Nierenzellkarzinoms

Langversion 1.0 - September 2015

AWMF-Registernummer: 043/017-OL
Inhaltsverzeichnis

1. Informationen zu dieser Leitlinie .. 5
 1.1. Herausgeber .. 5
 1.2. Federführende Fachgesellschaft(en) ... 5
 1.3. Finanzierung der Leitlinie .. 5
 1.4. Kontakt .. 5
 1.5. Zitierweise ... 5
 1.6. Besonderer Hinweis .. 6
 1.7. Ziele des Leitlinienprogramms Onkologie .. 6
 1.8. Weitere Dokumente zu dieser Leitlinie .. 7
 1.9. Zusammensetzung der Leitliniengruppe .. 7
 1.10. Verwendete Abkürzungen .. 12

2. Einführung ... 17
 2.1. Geltungsbereich und Zweck ... 17
 2.2. Grundlagen der Methodik .. 19

3. Epidemiologie, Risikofaktoren und Prävention .. 22
 3.1. Epidemiologie ... 22
 3.2. Modifizierbare Risikofaktoren von Nierenzelltumoren ... 23
 3.3. Nicht modifizierbare Risikofaktoren ... 24

4. Diagnostik, Prognosemarker und -scores (klinisch, molekular) ... 27
 4.1. Diagnostik ... 27
 4.2. Prognosemarker und -scores ... 37
 4.3. Nomogramme ... 38
 4.4. Präoperative Modelle .. 39
 4.5. Postoperative Modelle .. 40
 4.6. Modelle vor systemischer Therapie ... 46
 4.7. Weitere Risikomodelle für Patienten mit metastasiertem Nierenzellkarzinom 48

5. Therapie des nicht metastasierten Nierenzellkarzinoms .. 52
 5.1. Aktive Überwachung (Active Surveillance) .. 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.</td>
<td>Fokale Therapie des Nierenzellkarzinoms</td>
<td>57</td>
</tr>
<tr>
<td>6.</td>
<td>Organerhaltende Operation, OP-Techniken (offen-operativ, laparoskopisch, robotergestützt), Lymphadenektomie, Adenektomie</td>
<td>60</td>
</tr>
<tr>
<td>6.1.</td>
<td>Offene oder laparoskopische/robotergestützte Operation bei Teil-/Totalnephrektomie</td>
<td>60</td>
</tr>
<tr>
<td>6.2.</td>
<td>Einsatz von Warm- oder Kaltischämie</td>
<td>64</td>
</tr>
<tr>
<td>6.3.</td>
<td>Adjuvante Lymphadenektomie</td>
<td>69</td>
</tr>
<tr>
<td>6.4.</td>
<td>Adrenalektomie</td>
<td>70</td>
</tr>
<tr>
<td>6.5.</td>
<td>Bedeutung der R1-Befunde</td>
<td>70</td>
</tr>
<tr>
<td>6.6.</td>
<td>Organerhaltende Operation</td>
<td>75</td>
</tr>
<tr>
<td>7.</td>
<td>Systemtherapie des metastasierten Nierenzellkarzinoms</td>
<td>78</td>
</tr>
<tr>
<td>7.1.</td>
<td>Einleitung zum metastasierten klarzelligen Nierenzellkarzinom</td>
<td>78</td>
</tr>
<tr>
<td>7.2.</td>
<td>Chemotherapie des metastasierten klarzelligen Nierenzellkarzinoms</td>
<td>78</td>
</tr>
<tr>
<td>7.3.</td>
<td>Immuntherapie des metastasierten klarzelligen Nierenzellkarzinoms</td>
<td>79</td>
</tr>
<tr>
<td>7.4.</td>
<td>Chemoimmuntherapie des klarzelligen Nierenzellkarzinoms</td>
<td>81</td>
</tr>
<tr>
<td>7.5.</td>
<td>Zielgerichtete Therapie des fortgeschrittenen und/oder metastasierten klarzelligen Nierenzellkarzinoms</td>
<td>82</td>
</tr>
<tr>
<td>7.6.</td>
<td>Therapie bei terminaler Niereninsuffizienz</td>
<td>94</td>
</tr>
<tr>
<td>7.7.</td>
<td>Sequenztherapie des klarzelligen Nierenzellkarzinoms</td>
<td>95</td>
</tr>
<tr>
<td>7.8.</td>
<td>Kombinationstherapie des klarzelligen Nierenzellkarzinoms</td>
<td>96</td>
</tr>
<tr>
<td>7.9.</td>
<td>Beginn, Dauer und Wechsel der systemischen Therapie beim metastasierten Nierenzellkarzinom</td>
<td>98</td>
</tr>
<tr>
<td>8.</td>
<td>Lokale Metastasentherapie</td>
<td>103</td>
</tr>
<tr>
<td>8.1.</td>
<td>Allgemeines Vorgehen</td>
<td>103</td>
</tr>
<tr>
<td>8.2.</td>
<td>Stellenwert lokaler Therapien in Abhängigkeit von Zeitpunkt und Lokalisation der Metastasierung</td>
<td>105</td>
</tr>
<tr>
<td>8.3.</td>
<td>Vorgehen bei speziellen Metastasenlokalislationen</td>
<td>111</td>
</tr>
<tr>
<td>8.4.</td>
<td>Stellenwert der perioperativen Systemtherapie bei Metastasenchirurgie</td>
<td>126</td>
</tr>
<tr>
<td>9.</td>
<td>Neoadjuvante und adjuvante Therapie</td>
<td>127</td>
</tr>
<tr>
<td>9.1.</td>
<td>Neoadjuvante Therapie</td>
<td>127</td>
</tr>
<tr>
<td>9.2.</td>
<td>Adjuvante Therapie</td>
<td>130</td>
</tr>
<tr>
<td>10.</td>
<td>Palliative Lokaltherapie</td>
<td>133</td>
</tr>
</tbody>
</table>
1. Informationen zu dieser Leitlinie

1.1. Herausgeber
Leitlinienprogramm Onkologie der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWMF), Deutschen Krebsgesellschaft e.V. (DKG) und Deutschen Krebshilfe (DKH).

1.2. Federführende Fachgesellschaft(en)
Deutsche Gesellschaft für Urologie (DGU)

Deutsche Gesellschaft für Hämatologie und Onkologie (DGHO)

1.3. Finanzierung der Leitlinie
Diese Leitlinie wurde von der Deutschen Krebshilfe im Rahmen des Leitlinienprogramms Onkologie gefördert.

1.4. Kontakt
Office Leitlinienprogramm Onkologie
c/o Deutsche Krebsgesellschaft e.V.
Kuno-Fischer-Straße 8
14057 Berlin
leitlinienprogramm@krebsgesellschaft.de
www.leitlinienprogramm-onkologie.de

1.5. Zitierweise
Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Diagnostik, Therapie und Nachsorge des Nierenzellkarzinoms, Langversion 1.0, 2015, AWMF Registernummer: 043/017OL, http://leitlinienprogramm-onkologie.de/Leitlinien.7.0.html (Zugriff am: TT.MM.JJJJ)
1.6. **Besonderer Hinweis**

Der Benutzer selbst bleibt verantwortlich für jede diagnostische und therapeutische Applikation, Medikation und Dosierung.

In dieser Leitlinie sind eingetragene Warenzeichen (geschützte Waren nombres) nicht besonders kenntlich gemacht. Es kann also aus dem Fehlen eines entsprechenden Hinweises nicht geschlossen werden, dass es sich um einen freien Warenname handelt.

1.7. **Ziele des Leitlinienprogramms Onkologie**

dung von aus Leitlinien extrahierten Qualitätsindikatoren im Rahmen der Zertifizierung von Organtumorzentren.

1.8. **Weitere Dokumente zu dieser Leitlinie**

Bei diesem Dokument handelt es sich um die Konsultationsfassung der Langversion der S3-Leitlinie Diagnostik, Therapie und Nachsorge des Nierenzellkarzinoms. Neben der Langversion wird es folgende ergänzende Dokumente zu dieser Leitlinie geben:

- Kurzversion der Leitlinie
- Laienversion (Patientenleitlinie)
- Leitlinienreport zum Erstellungsprozess der Leitlinie inklusive Evidenztabellen
- Evidenzberichte zu den Forschungsfragen Diagnostik und Vergleich von Wirksamkeit und Sicherheit systemischer Therapien

Diese Leitlinie und alle Zusatzdokumente sind über die folgenden Seiten zugänglich.

- Leitlinienprogramm Onkologie (http://www.leitlinienprogramm-onkologie.de/OL/leitlinien.html)
- AWMF (www.leitlinien.net)
- Deutsche Krebsgesellschaft (http://www.krebsgesellschaft.de/wub_levideenzbasiert,120884.html)
- Deutsche Krebshilfe (http://www.krebshilfe.de/)
- Guidelines International Network (www.g-i-n.net)

1.9. **Zusammensetzung der Leitliniengruppe**

1.9.1. **Koordination und Redaktion**

Prof. Dr. Christian Doehn, Lübeck, Urologikum Lübeck
Prof. Dr. Susanne Krege, Essen, Kliniken Essen Mitte

1.9.2. **Beteiligte Fachgesellschaften und Organisationen**

In Tabelle 1 sind die an der Leitlinienerstellung beteiligten medizinischen Fachgesellschaften und sonstigen Organisationen sowie deren mandatierte Vertreter aufgeführt.
Tabelle 1: Beteiligte Fachgesellschaften und Organisationen

<table>
<thead>
<tr>
<th>Beteiligte Fachgesellschaften und Organisationen</th>
<th>Mandatsträger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsche Gesellschaft für Urologie (DGU)</td>
<td>Prof. Dr. J. Bedke, Prof. Dr. C. Doehn, Prof. Dr. J. Roigas, Prof. Dr. S. Siemer</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Hämatologie und Onkologie (DGHO)</td>
<td>Prof. Dr. L. Bergmann, PD Dr. T. Gauler, Prof. Dr. V. Grünwald</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Radioonkologie (DEGRO)</td>
<td>Prof. Dr. M. Bremer (bis 07/2013), PD Dr. A. C. Müller (ab Sommer 2013), Prof. Dr. M. Guckenberger</td>
</tr>
<tr>
<td>Deutsche Röntgengesellschaft (DRG)</td>
<td>Prof. Dr. P. Hallscheidt</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Nuklearmedizin (DGN)</td>
<td>Prof. Dr. M. Bähre</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Pathologie (DGP)</td>
<td>Prof. Dr. A. Hartmann, Prof. Dr. H. Moch, Prof. Dr. S. Störkel</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Thoraxchirurgie (DGT)</td>
<td>Prof. Dr. J. Pfannschmidt, PD Dr. S. Welter</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Palliativmedizin (DGpalli)</td>
<td>Prof. Dr. B. Volkmer</td>
</tr>
<tr>
<td>Deutsche Gesellschaft für Nephrologie (DGFN)</td>
<td>Prof. Dr. K. Amann</td>
</tr>
<tr>
<td>Interdisziplinäre Arbeitsgruppe Nierenzellkarzinom (IAG-N)</td>
<td>Prof. Dr. D. Arnold, PD Dr. B. Brehmer, PD Dr. C. Eichelberg, PD Dr. M. Johannsen, PD Dr. J. Jones, Prof. Dr. K. Junker, Prof. Dr. M. Scheuken, Prof. Dr. J. A. Schrader, PD Dr. M. Staehler, Prof. Dr. S. Weikert</td>
</tr>
<tr>
<td>Berufsverband der deutschen Urologen (BDU)</td>
<td>Dr. B. Göckel-Beining</td>
</tr>
<tr>
<td>Berufsverband der Niedergelassenen Hämatologen und Onkologen in Deutschland (BNHO)</td>
<td>Dr. G. Gehbauer</td>
</tr>
<tr>
<td>Berufsverband der deutschen Strahlentherapeuten (BVDST)</td>
<td>Prof. Dr. O. Micke</td>
</tr>
<tr>
<td>Berufsverband der deutschen Pathologen (BDP)</td>
<td>Prof. Dr. A. Hartmann, Prof. Dr. H. Moch, Prof. Dr. S. Störkel</td>
</tr>
<tr>
<td>Deutscher Verband der Ergotherapeuten (DVE)</td>
<td>A. Müller</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Urologische Onkologie (AOU) in der Deutschen Krebsgesellschaft</td>
<td>Prof. Dr. J. Gschwend, Prof. Dr. S. Krege, Prof. Dr. T. Steiner</td>
</tr>
</tbody>
</table>
| Arbeitsgemeinschaft Internistische Onkologie (AIO) in | Prof. Dr. L. Bergmann, PD Dr. T. Gauler,
<table>
<thead>
<tr>
<th>Beteiligte Fachgesellschaften und Organisationen</th>
<th>Mandatsträger</th>
</tr>
</thead>
<tbody>
<tr>
<td>der Deutschen Krebsgesellschaft</td>
<td>Prof. Dr. V. Grünwald</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Onkologische Pathologie (AOP) in der Deutschen Krebsgesellschaft</td>
<td>Prof. Dr. A. Hartmann, Prof. Dr. H. Moch</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Onkologische Thoraxchirurgie (AOT) in der Deutschen Krebsgesellschaft</td>
<td>Prof. Dr. J. Schirren</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Palliativmedizin (APM)</td>
<td>Prof. Dr. T. Klotz, PD Dr. S. Fetscher, PD Dr. B. van Oorschot</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Supportive Maßnahmen in der Onkologie, Rehabilitation und Sozialmedizin (ASORS)</td>
<td>PD Dr. M. Raida, PD Dr. C. Protzel</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Rehabilitation urol. u. nephrol. Erkrankungen (AKR)</td>
<td>PD Dr. W. Vahlensieck</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Psychoonkologie (PSO)</td>
<td>Dr. A. Rose, Dr. A. Flörcken</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Prävention und integrative Onkologie (PRIO)</td>
<td>Dr. C. Stoll</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft erbliche Tumorerkrankungen (AET)</td>
<td>PD Dr. R. Caspari</td>
</tr>
<tr>
<td>Arbeitsgemeinschaft Tumorklassifikation in der Onkologie (ATO)</td>
<td>Prof. Dr. Wittekind</td>
</tr>
<tr>
<td>Konferenz onkologischer Kranken- und Kinderkrankenpflege (KOK)</td>
<td>U. Ritterbusch</td>
</tr>
<tr>
<td>Deutscher Verband für Physiotherapie (ZVK)</td>
<td>E. Böhle</td>
</tr>
<tr>
<td>Dachverband der Technologen und Analytiker i. d. Medizin (DVTA)</td>
<td>D. C. Klein</td>
</tr>
<tr>
<td>Selbsthilfegruppe Das Lebenshaus</td>
<td>B. Eberhardt</td>
</tr>
<tr>
<td>Selbsthilfegruppe Verein für von der von Hippel-Lindau (VHL) Erkrankung betroffene Familien</td>
<td>G. Alsmeier</td>
</tr>
</tbody>
</table>

Die Arbeitsgemeinschaft Chirurgische Onkologie (CAO) der Deutschen Krebsgesellschaft wurde ebenfalls angefragt, benannte aber keinen Vertreter.

Für die Bearbeitung der unterschiedlichen Themenkomplexe wurden insgesamt elf Arbeitsgruppen gebildet. Die Mitglieder der jeweiligen Arbeitsgruppen sind in Tabelle 2 aufgeführt.
<table>
<thead>
<tr>
<th>Arbeitsgruppe</th>
<th>Mitglieder der Arbeitsgruppe (AG-Leiter fett markiert)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG 1-Epidemiologie, Risikofaktoren, Prävention und Früherkennung</td>
<td>G. Alsmeier, PD Dr. R. Caspari, Dr. B. Göckel-Beining, Prof. Dr. K. Junker, Dr. J. Schleicher, Dr. C. Stoll, Prof. Dr. S. Weikert</td>
</tr>
<tr>
<td>AG 2-Diagnostik, Prognosemarker und -scores (klinisch, molekular)</td>
<td>Prof. Dr. K. Amann, Prof. Dr. M. Bähre, PD Dr. C. Eichelberg, Prof. Dr. P. Hallscheidt, Prof. Dr. A. Hartmann, Prof. Dr. K. Junker, D. C. Klein, Prof. Dr. H. Moch, Prof. Dr. B. Seliger, Prof. Dr. C. Wittekind</td>
</tr>
<tr>
<td>AG 3-Active Surveillance und Watchful Waiting, Fokale Therapie (Radiofrequenzablation, Kryoaablation)</td>
<td>Prof. Dr. C. Doehn, Prof. Dr. P. Hallscheidt, PD Dr. J. Jones, Prof. Dr. J. Roigas, Prof. Dr. T. Steiner, Prof. Dr. H. Wunderlich</td>
</tr>
<tr>
<td>AG 4-Organerhaltende Operation, OP-Techniken (offen-operativ, laparosko-pisch, Robotergestützt), Lymphadenektomie, Adrenalektomie</td>
<td>G. Alsmeier, Prof. Dr. J. Bedke, PD Dr. C. Eichelberg, PD Dr. J. Jones, Prof. Dr. A. Schrader, Prof. Dr. S. Siemer, Prof. Dr. S. Weikert</td>
</tr>
<tr>
<td>AG 5-Systemtherapie: First-Line Therapie, Second-Line Therapie, Sequenztherapien, Kombinationstherapien</td>
<td>Prof. Dr. L. Bergmann, PD Dr. B. Brehmer, B. Eberhardt, PD Dr. T. Gauler, Dr. G. Gehbauer, Prof. Dr. V. Grünwald, Prof. Dr. J. Gschwend, PD Dr. M. Johannsen, Prof. Dr. T. Klotz, PD Dr. C. Protzel, PD Dr. M. Schenck, Prof. Dr. A. Schrader, PD Dr. M. Staehler</td>
</tr>
<tr>
<td>AG 6-Bedeutung der Primärtumorentfernung, Stellenwert lokaler Therapien in der metastasierten Situation</td>
<td>Prof. Dr. J. Bedke, Dr. A. Bex, PD Dr. B. Brehmer, Prof. Dr. H. Dürr, Prof. Dr. M. Guckenberger, Prof. Dr. S. Krege, PD Dr. A.-C. Müller, Prof. Dr. J. Pfannschmidt, Prof. Dr. J. Schirren, Dr. J. Schleicher, PD Dr. M. Staehler, Prof. Dr. B. Volkmer, PD Dr. S. Welter</td>
</tr>
<tr>
<td>AG 7-Neo-adjuvante Therapie, Adjuvante Therapie</td>
<td>Dr. A. Bex, Prof. Dr. C. Doehn, PD Dr. T. Gauler, Prof. Dr. V. Grünwald, Prof. Dr. S. Krege, Prof. Dr. M. Scheulen, Dr. Z. Varga</td>
</tr>
<tr>
<td>AG 8-Palliative Radiotherapie</td>
<td>Prof. Dr. D. Arnold, Prof. Dr. M. Guckenberger, Prof. Dr. O. Micke, PD Dr. A.-C. Müller, PD Dr. B. van Oorschot, Dr. Z. Varga</td>
</tr>
<tr>
<td>AG 9-Supportive Maßnahmen, komplementäre Therapien</td>
<td>E. Böhle, Dr. A. Flörcken, Dr. G. Gehbauer, PD Dr. M. Johannsen, Prof. Dr. T. Klotz, PD Dr. M. Raida, Dr. C. Stoll, Prof. Dr. B. Volkmer, PD Dr. B. van Oorschot</td>
</tr>
<tr>
<td>AG 10-Rehabilitation und Nachsorge, Versorgungsstrukturen</td>
<td>Prof. Dr. M. Bähre, PD Dr. B. Brehmer, PD Dr. S. Fetscher, A. Müller, PD Dr. M. Raida, Dr. A. Rose, Prof. Dr. T. Steiner, PD Dr. W. Vahlensieck</td>
</tr>
</tbody>
</table>
1.9 Zusammensetzung der Leitliniengruppe

<table>
<thead>
<tr>
<th>Arbeitsgruppe</th>
<th>Mitglieder der Arbeitsgruppe (AG-Leiter fett markiert)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG 11-Psycho-onkologische Aspekte</td>
<td>B. Eberhardt, Dr. A. Flörcken, U. Ritterbusch, Dr. A. Rose</td>
</tr>
<tr>
<td>AG 12-Qualitätsindikatoren</td>
<td>Dr. H. Barlag (ADT), B. Eberhardt, Dr. M. Follmann MPH (Moderation), PD Dr. T. Gauler, Dr. B. Hoschke (ADT), PD Dr. M. Johannsen, Prof. Dr. O. Micke, A. Müller, Dr. M. Nothacker MPH (AWMF), PD Dr. M. Raida, U. Ritterbusch, Prof. S. Siemer, PD Dr. B. van Oorschot, Dr. S. Wesselmann MBA (DKG-Zertifizierung)</td>
</tr>
</tbody>
</table>

1.9.3. **Beteiligte Experten ohne Mandat**

Die folgenden Fachexperten waren ad personam an der Erstellung der Leitlinien beteiligt: Dr. A. Bex, Prof. Dr. H. Dürr, PD Dr. M. Schenck, Dr. J. Schleicher, Prof. Dr. B. Seliger, Dr. Z. Varga, Prof. Dr. H. Wunderlich.

1.9.4. **Patientenbeteiligung**

Die Leitlinie wurde unter direkter Beteiligung von zwei Patientenvertretern erstellt.

Frau B. Eberhardt und Herr A. Alsmeier waren von Beginn an in die Erstellung der Leitlinie eingebunden und nahmen mit eigenem Stimmrecht an den Konsensuskonferenzen teil.

1.9.5. **Methodische Begleitung**

Durch das Leitlinienprogramm Onkologie:

- Dipl.-Soz.Wiss. Thomas Langer (DKG)
- Dr. med. Markus Follmann MPH MSc (DKG)
- Dr. med. Monika Nothacker MPH (AWMF)

1.9.6. **Auftragnehmer der Leitliniengruppe**

Für Evidenzberichte:

- Department für Evidenzbasierte Medizin und Klinische Epidemiologie der Donau-Universität Krems (Univ.-Prof. Dr. Gerald Gartlehner; MPH, Dr. Peter Mahlknecht; Barbara Nußbaumer, Bakk. BSc. MSc.; Megan G. Van Noord, MSc; Dr. Maria Flamm; Mag. Bita Mesgarpour)

Für die Entwicklung der Qualitätsindikatoren:

- Dr. Simone Wesselmann MBA, Deutsche Krebsgesellschaft – Bereich Zertifizierung (Recherche und Vorschläge zur Ableitung der Qualitätsindikatoren)

1.9.7. **Weitere Begleitung**

- Dr. C. Loitsch (Wissenschaftliche Mitarbeiterin, Recherchen)
- Frau H. Rexer, MeckEvidence (Organisation, Management, Sekretariat)
1.10. Verwendete Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>Area under the Curve, Bereich unter der Kurve</td>
</tr>
<tr>
<td>bds.</td>
<td>Beiderseits</td>
</tr>
<tr>
<td>AE</td>
<td>Adverse Event</td>
</tr>
<tr>
<td>AHB</td>
<td>Anschlussheilbehandlung</td>
</tr>
<tr>
<td>ARH/AR</td>
<td>Anschlussrehabilitation</td>
</tr>
<tr>
<td>ASCO</td>
<td>American Society of Clinical Oncology</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BSC</td>
<td>Best Supportive Care</td>
</tr>
<tr>
<td>CCF</td>
<td>Cleveland Clinical Foundation</td>
</tr>
<tr>
<td>ccRCC</td>
<td>Clear Cell Renal Carcinoma</td>
</tr>
<tr>
<td>CI</td>
<td>Konfidenzintervall</td>
</tr>
<tr>
<td>C-Index</td>
<td>Concordance-Index</td>
</tr>
<tr>
<td>C-Kit</td>
<td>Tyrosine-Protein Kinase Kit, Tyrosin Kinase</td>
</tr>
<tr>
<td>CR</td>
<td>Complete Remission</td>
</tr>
<tr>
<td>CSF</td>
<td>Colony Stimulating Factor</td>
</tr>
<tr>
<td>CSS</td>
<td>Cancer Specific Survival, krebsspezifisches Überleben</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>DFIS</td>
<td>Drug Free Interval Strategy</td>
</tr>
<tr>
<td>DSS</td>
<td>Disease Specific Survival, krankheitspezifisches Überleben</td>
</tr>
<tr>
<td>EAU</td>
<td>European Association of Urology, Europäische Urologenvereinigung</td>
</tr>
<tr>
<td>ECOG</td>
<td>Eastern Cooperative Oncology Group</td>
</tr>
<tr>
<td>EG</td>
<td>Empfehlungsgrad, A=starke Empfehlung, B=Empfehlung, 0=offene Empfehlung,</td>
</tr>
<tr>
<td>EK</td>
<td>Expertenkonsens</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Etc.</td>
<td>Et cetera</td>
</tr>
<tr>
<td>FLT</td>
<td>FMS-related Tyrosinkinase, Tyrosin Kinase</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomeruläre Filtrationsrate</td>
</tr>
<tr>
<td>Gy</td>
<td>Gray, Einheit der absorbierten Strahlendosis</td>
</tr>
<tr>
<td>HIFU</td>
<td>Hoch Fokussierender Ultraschall</td>
</tr>
<tr>
<td>HPRCC</td>
<td>Hereditäres Papilläres Nierenzellkarzinom</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard Ratio</td>
</tr>
<tr>
<td>IDC</td>
<td>International Database Consortium</td>
</tr>
<tr>
<td>i. d. R.</td>
<td>In der Regel</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IGRT</td>
<td>Bildgeführte Strahlentherapie</td>
</tr>
<tr>
<td>IKCWG</td>
<td>International Kidney Cancer Working Group</td>
</tr>
<tr>
<td>IL-2</td>
<td>Interleukin 2</td>
</tr>
<tr>
<td>IMRT</td>
<td>Intensitäts-modulierte Radiotherapie</td>
</tr>
<tr>
<td>IQR</td>
<td>Interquartilrange</td>
</tr>
<tr>
<td>INF-alpha</td>
<td>Interferon-alpha</td>
</tr>
<tr>
<td>ISUP</td>
<td>International Society of Urologic Pathology, Internationale Gesellschaft für Urologische Pathologie</td>
</tr>
<tr>
<td>ITT</td>
<td>Intent to Treat</td>
</tr>
<tr>
<td>LDH</td>
<td>Laktatdehydrogenase</td>
</tr>
<tr>
<td>LL</td>
<td>Leitlinie</td>
</tr>
<tr>
<td>LoE</td>
<td>Level of Evidence</td>
</tr>
<tr>
<td>LPN</td>
<td>Laparoscopic Partial Nephrectomy</td>
</tr>
<tr>
<td>MD</td>
<td>Median</td>
</tr>
<tr>
<td>MET</td>
<td>Tyrosin Kinase</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>mRCC</td>
<td>Metastatic Renal Cell Carcinoma, metastasiertes Nierenzellkarzinom</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>MSKCC-Score</td>
<td>Memorial Sloan Kettering Cancer Center-Score</td>
</tr>
<tr>
<td>NCCN</td>
<td>National Comprehensive Cancer Network</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Clinical Excellence</td>
</tr>
<tr>
<td>NPV</td>
<td>Negative Predictive Value</td>
</tr>
<tr>
<td>NR</td>
<td>Not Reached</td>
</tr>
<tr>
<td>NSS</td>
<td>Nephron-sparing Surgery</td>
</tr>
<tr>
<td>OMIM</td>
<td>Online Mendelian Inheritance in Man, Datenbank der Gene des Menschen und ihrer Mutationen</td>
</tr>
<tr>
<td>OP</td>
<td>Operation</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>ORR</td>
<td>Overall Remission Rate</td>
</tr>
<tr>
<td>OS</td>
<td>Overall Survival, Gesamtüberleben</td>
</tr>
<tr>
<td>PADUA</td>
<td>Padua-Score</td>
</tr>
<tr>
<td>PAR</td>
<td>Positiver Absetzungsrand</td>
</tr>
<tr>
<td>PD1</td>
<td>Molekulare Substanz</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet Derived Growth Factor</td>
</tr>
<tr>
<td>PET</td>
<td>Positronen-Emissions-Tomographie</td>
</tr>
<tr>
<td>PFS</td>
<td>Progression Free Survival, Progressionsfreies Überleben</td>
</tr>
<tr>
<td>PMR</td>
<td>Progressive Muskelrelaxation</td>
</tr>
<tr>
<td>PPV</td>
<td>Positive Predictive Value</td>
</tr>
<tr>
<td>PR</td>
<td>Partial remission</td>
</tr>
<tr>
<td>QALY</td>
<td>Quality-Adjusted Life years, Qualitätskorrigierte Lebensjahre</td>
</tr>
<tr>
<td>QoL</td>
<td>Quality of life</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>R.E.N.A.L.-Score</td>
<td>(R)adius (scores tumor size as maximal diameter), (E)xophytic/endophytic properties of the tumor, (N)earness of the deepest portion of the tumor to the collecting system or sinus, (A)terior (a)/posterior (p) descriptor and the (L)ocation relative to the polar line, Nephrometrie-Score</td>
</tr>
<tr>
<td>RAF</td>
<td>Rapidly Accelerated Fibrosarcoma, Tyrosin Kinase</td>
</tr>
<tr>
<td>RAPN</td>
<td>Robotic assisted partial nephrectomy, Robotierassistierte Teilnephrektomie</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized clinical trial, Randomisierte Klinische Studie</td>
</tr>
<tr>
<td>RECIST</td>
<td>Response Evaluation Criteria In Solid Tumors</td>
</tr>
<tr>
<td>RET</td>
<td>Rearranged during Transfection, Tyrosin Kinase</td>
</tr>
<tr>
<td>RFA</td>
<td>Radiofrequenzablation</td>
</tr>
<tr>
<td>RKI</td>
<td>Robert-Koch-Institut</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristic</td>
</tr>
<tr>
<td>RPA</td>
<td>Recursive-Partition-Analysis</td>
</tr>
<tr>
<td>RR</td>
<td>Relatives Risiko</td>
</tr>
<tr>
<td>SABR</td>
<td>Stereotactic ablative body radiotherapy</td>
</tr>
<tr>
<td>SAE</td>
<td>Severe Adverse Event</td>
</tr>
<tr>
<td>SD</td>
<td>Stable Disease, Stabile Erkrankung</td>
</tr>
<tr>
<td>SIGN</td>
<td>Scottish Intercollegiate Guidelines Network</td>
</tr>
<tr>
<td>SRE</td>
<td>Skeletal Related Event, Skelett-bezogene Ereignisse</td>
</tr>
<tr>
<td>SRM</td>
<td>Small Renall Mass</td>
</tr>
<tr>
<td>SRS</td>
<td>Stereotactic radiosurgery</td>
</tr>
<tr>
<td>SSIGN-Score</td>
<td>Mayo Clinic Stage, Size, Grade and Necrosis-Score</td>
</tr>
<tr>
<td>ST</td>
<td>Statement</td>
</tr>
<tr>
<td>s. u.</td>
<td>Siehe unter</td>
</tr>
<tr>
<td>TENS</td>
<td>Transcutane Elektrotherapie</td>
</tr>
<tr>
<td>TKI</td>
<td>Tyrosinkinase-Inhibitor</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erläuterung</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Necrosis Factor</td>
</tr>
<tr>
<td>TNM</td>
<td>Tumor-Nodes-Metastases</td>
</tr>
<tr>
<td>TT</td>
<td>Targeted Therapy</td>
</tr>
<tr>
<td>UISS</td>
<td>UCLA Integrated Staging System</td>
</tr>
<tr>
<td>VATS</td>
<td>Video-Assisted Thoracoscopy</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular Endothelial Growth Factor</td>
</tr>
<tr>
<td>VEGFR</td>
<td>Vascular Endothelial Growth Factor Receptor</td>
</tr>
<tr>
<td>VHL</td>
<td>von Hippel-Lindau-Syndrom</td>
</tr>
<tr>
<td>WBRT</td>
<td>Whole Brain Radiotherapy, Ganzhirnbestrahlung</td>
</tr>
<tr>
<td>WHO</td>
<td>Welt-Gesundheitsorganisation</td>
</tr>
<tr>
<td>WIT</td>
<td>Warm ischemic time, warme Ischämiezeit</td>
</tr>
<tr>
<td>WMD</td>
<td>Weighted Mean Difference</td>
</tr>
</tbody>
</table>
2. **Einführung**

2.1. **Geltungsbereich und Zweck**

2.1.1. **Zielsetzung und Fragestellung**

In der Therapie des Nierenzellkarzinoms haben sich sowohl im operativen Bereich durch minimal-invasive und ablative Verfahren als auch durch innovative zielgerichtete Substanzen insbesondere auch in der systemischen Therapie neue Optionen eröffnet. Bisher gibt es im deutschsprachigen Raum lediglich Expertenempfehlungen, eine durch die Fachgesellschaften getragene Leitlinie ist jedoch nicht verfügbar. Ziel der erstmalig erarbeiteten S3-Leitlinie „Diagnostik, Therapie und Nachsorge des Nierenzellkarzinoms“ ist die Empfehlung einer evidenzbasierten Diagnostik und Therapie in Abhängigkeit von Histologie und Tumorstadium, um einheitliche Standards zu entwickeln. Dies gilt insbesondere auch für die spezielle Tumornachsorge beim Nierenzellkarzinom.

Die Leitlinie nimmt insbesondere Stellung zu folgenden Fragestellungen:

- Epidemiologie, Risikofaktoren und Prävention
- Diagnostik, Prognosemarker und -scores (klinisch, molekular)
- Therapie des nicht metastasierten Nierenzellkarzinoms
- Organerhaltende Operation, OP-Techniken (offen-operativ, laparoskopisch, robotergestützt), Lymphadenektomie
- Systemtherapie des metastasierten Nierenzellkarzinoms
- Lokale Metastasentherapie
- Neoadjuvante und adjuvante Therapie
- Palliative Lokaltherapie
- Supportive Maßnahmen, komplementäre Therapien
- Rehabilitation und Nachsorge
- Psychoonkologische Aspekte

2.1.2. **Adressaten**

Die Empfehlungen dieser S3-Leitlinie richten sich an:

- Ärztinnen und Ärzte der hausärztlichen Versorgung
- Niedergelassene und klinisch tätige Urologen, Onkologen etc.
- Pflegekräfte und Therapieberufe
- Organisationen der Patientenberatung
- Selbsthilfegruppen
- Kostenträger

2.1.3. **Gültigkeitsdauer und Aktualisierungsverfahren**

Die S3-Leitlinie ist bis zur nächsten Aktualisierung gültig, die Gültigkeitsdauer wird auf 3 Jahre geschätzt. Vorgesehen sind regelmäßige Aktualisierungen, bei dringendem Änderungsbedarf werden Änderungen der Empfehlungen in neuen Leitlinienversionen publiziert. Die Leitliniengruppe behält sich vor, bei akutem Änderungsbedarf, Amendments zur Leitlinie zu erstellen und zu publizieren.
Kommentare und Hinweise für den Aktualisierungsprozess sind ausdrücklich erwünscht und können an das Leitliniensekretariat adressiert werden:

Frau Heidrun Rexer
MeckEvidence
Seestr. 11
17252 Schwarz
Tel.: 039827/79 677
Fax: 039827/79 678
Mobil: 0173/907 67 15
E-Mail: Heidrun.Rexer@meckevidence.de
2.2. Grundlagen der Methodik

2.2.1. Schema der Evidenzgraduierung nach SIGN

Tabelle 3: Schema der Evidenzgraduierung nach SIGN

<table>
<thead>
<tr>
<th>Grad</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1++</td>
<td>Qualitativ hochwertige Metaanalysen, Systematische Übersichten von RCTs, oder RCTs mit sehr geringem Risiko systematischer Fehler (Bias)</td>
</tr>
<tr>
<td>1+</td>
<td>Gut durchgeführte Metaanalysen, Systematische Übersichten von RCTs, oder RCTs mit geringem Risiko systematischer Fehler (Bias)</td>
</tr>
<tr>
<td>1-</td>
<td>Metaanalysen, Systematische Übersichten von RCTs, oder RCTs mit hohem Risiko systematischer Fehler (Bias)</td>
</tr>
<tr>
<td>2++</td>
<td>Qualitativ hochwertige systematische Übersichten von Fall-Kontroll- oder Kohortenstudien oder Qualitativ hochwertige Fall-Kontroll- oder Kohortenstudien mit sehr niedrigem Risiko systematischer Verzerrungen (Confounding, Bias, „Chance“) und hoher Wahrscheinlichkeit, dass die Beziehung ursächlich ist</td>
</tr>
<tr>
<td>2+</td>
<td>Gut durchgeführte Fall-Kontroll-Studien oder Kohortenstudien mit niedrigem Risiko systematischer Verzerrungen (Confounding, Bias, „Chance“) und moderater Wahrscheinlichkeit, dass die Beziehung ursächlich ist</td>
</tr>
<tr>
<td>2-</td>
<td>Fall-Kontroll-Studien oder Kohortenstudien mit einem hohen Risiko systematischer Verzerrungen (Confounding, Bias, „Chance“) und signifikantem Risiko, dass die Beziehung nicht ursächlich ist</td>
</tr>
<tr>
<td>3</td>
<td>Nicht-analytische Studien, z.B. Fallberichte, Fallserien</td>
</tr>
<tr>
<td>4</td>
<td>Expertenmeinung</td>
</tr>
</tbody>
</table>

2.2.2. Schema der Empfehlungsgraduierung

Die Methodik des Leitlinienprogramms Onkologie sieht eine Vergabe von Empfehlungsgraden durch die Leitlinienautoren im Rahmen eines formalen Konsensusverfahrens vor. Dementsprechend wurden durch die AWMF moderierte, nominale Gruppenprozesse bzw. strukturierte Konsensuskonferenzen durchgeführt [1]. Im Rahmen dieser Prozesse wurden die Empfehlungen von den stimmberechtigten Mandatsträgern (siehe Kapitel 1.9.2) formal abgestimmt. Die Ergebnisse der jeweiligen Abstimmungen
(Konsensstärke) sind entsprechend den Kategorien in Tabelle 5 den Empfehlungen zugeordnet.

In der Leitlinie werden zu allen evidenzbasierten Statements (siehe Kapitel 2.2.3) und Empfehlungen das Evidenzlevel (siehe 2.2.1) der zugrunde liegenden Studien sowie bei Empfehlungen zusätzlich die Stärke der Empfehlung (Empfehlungsgrad) ausgewiesen. Hinsichtlich der Stärke der Empfehlung werden in dieser Leitlinie drei Empfehlungsgrade unterschieden (siehe Tabelle 4), die sich auch in der Formulierung der Empfehlungen jeweils widerspiegeln.

Tabelle 4: Schema der Empfehlungsgraduierung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Beschreibung</th>
<th>Ausdrucksweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Starke Empfehlung</td>
<td>soll/soll nicht</td>
</tr>
<tr>
<td>B</td>
<td>Empfehlung</td>
<td>sollte/sollte nicht</td>
</tr>
<tr>
<td>0</td>
<td>Empfehlung offen</td>
<td>kann /kann verzichtet werden</td>
</tr>
</tbody>
</table>

Tabelle 5: Konsensusstärke

<table>
<thead>
<tr>
<th>Konsensstärke</th>
<th>Prozentuale Zustimmung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starker Konsens</td>
<td>> 95% der Stimmberechtigten</td>
</tr>
<tr>
<td>Konsens</td>
<td>> 75-95% der Stimmberechtigten</td>
</tr>
<tr>
<td>Mehrheitliche Zustimmung</td>
<td>≥ 50-75% der Stimmberechtigten</td>
</tr>
<tr>
<td>Dissens</td>
<td>< 50% der Stimmberechtigten</td>
</tr>
</tbody>
</table>

Die Entscheidungskriterien für die Festlegung der Empfehlungsgrade werden im Leitlinienreport zu dieser Leitlinie erläutert.

2.2.3. Statements

Als Statements werden Darlegungen oder Erläuterungen von spezifischen Sachverhalten oder Fragestellungen ohne unmittelbare Handlungsaufforderung bezeichnet. Sie werden entsprechend der Vorgehensweise bei den Empfehlungen im Rahmen eines formalen Konsensusverfahrens verabschiedet und können entweder auf Studienergebnissen oder auf Expertenmeinungen beruhen.

2.2.4. Expertenkonsens (EK)

2.2.5. **Unabhängigkeit und Darlegung möglicher Interessenkonflikte**

Anschließend wurden die Daten der Personen gesichtet, bei denen in den oben genannten Kategorien Angaben vorlagen.

An dieser Stelle möchten wir allen Mitarbeitern für ihre ausschließlich ehrenamtliche Mitarbeit an dem Projekt danken.
3. Epidemiologie, Risikofaktoren und Prävention

3.1. Epidemiologie

3.1.1. Hintergrund
Im Krebsregister des Robert Koch-Instituts (RKI) werden unter dem ICD-10-Code C64 alle bösartigen Erkrankungen der Niere mit Ausnahme der urothelialen Karzinome des Nierenbeckens erfasst. Über 90 % dieser Karzinome sind Nierenzellkarzinome [2].

3.1.2. Inzidenz

3.1.3. Prävalenz

3.1.4. Mortalität

Die Prognose beim Nierenzellkrebs ist vergleichsweise günstig, die relative 5-Jahres-Überlebensrate ist mit 75 % bei Männern und 77 % bei Frauen im Vergleich zu anderen Tumorerkrankungen relativ hoch und im Zeitverlauf ansteigend [2]. Allerdings ist die Prognose v. a. vom zugrunde liegenden Tumorstadium abhängig. So sinkt die relative
3.2 Modifizierbare Risikofaktoren von Nierenzelltumoren

5-Jahres-Überlebensrate von 97% im Stadium I über 87% im Stadium II und 69% im Stadium III auf nur noch 14% im Stadium IV ab (Quelle: Tumorregister München; http://www.tumorregister-muenchen.de/facts/surv/surv_C64_G.pdf).

3.1.5. T-Kategorien bei Erstdiagnose

3.2. Modifizierbare Risikofaktoren von Nierenzelltumoren

<table>
<thead>
<tr>
<th>3.1.</th>
<th>Evidenzbasiertes Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Evidence</td>
<td>Rauchen, Übergewicht und erhöhter Blutdruck erhöhen das Risiko, an einem Nierenzellkarzinom zu erkranken.</td>
</tr>
<tr>
<td>2++</td>
<td>Literatur: [4-13]</td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.2.</th>
<th>Evidenzbasiertes Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Evidence</td>
<td>Die adäquate Einstellung des Blutdrucks kann das Erkrankungsrisiko für Nierenzellkarzinome senken.</td>
</tr>
<tr>
<td>2+</td>
<td>Literatur: [14-21]</td>
</tr>
<tr>
<td></td>
<td>Konsens</td>
</tr>
</tbody>
</table>

Hintergrund

3.2.1. Rauchen
Rauchen ist ein gesicherter Risikofaktor für das Nierenzellkarzinom. Entsprechend einer Meta-Analyse [4], die 19 Fall-Kontroll- (8.032 Fälle und 13.800 Kontrollen) und fünf Kohortenstudien (n=1.457.754 einschließlich 1.326 Fälle) einschloss, haben Raucher oder Ex-Raucher verglichen mit Individuen, die nie geraucht haben, ein erhöhtes Risiko, ein Nierenzellkarzinom zu entwickeln. Die geschätzte Risikoerhöhung wird bei Männern mit 54% und bei Frauen mit 22% angegeben, allerdings ist eine klare Dosis-Wirkungsbeziehung mit höheren Risiken bei starken Rauchern nachweisbar. Die Risikoerhöhung durch Passivrauchen ist noch nicht ausreichend gesichert [5-7].

Die bisherige Evidenz für ein reduziertes Risiko für männliche Ex-Raucher, die mindestens 10 Jahre nicht mehr rauchen, gegenüber Rauchern ist auf wenige Studien begrenzt [4, 5, 8].
3.2.2. Übergewicht/Adipositas
Übergewicht im Sinne eines erhöhten BMI ist mit einem erhöhten Risiko für Nierenzelltumoren verbunden. Entsprechend einer Meta-Analyse [9] prospektiver Kohortenstudien (n=3.473.638; 6.073 Fälle bei Männern; 4.614 Fälle bei Frauen) beträgt die Risikoerhöhung pro Erhöhung des BMI um 5 kg/m² ca. 24 % bei Männern und 34 % bei Frauen. Es gibt unsichere Hinweise, dass unabhängig vom BMI die abdominelle Adipositas ein Risikofaktor sein könnte [10-13].

3.2.3. Bluthochdruck und Einnahme antihypertensiver Medikamente

3.2.4. Ernährung

3.3. Nicht modifizierbare Risikofaktoren

3.3.1. Terminale Niereninsuffizienz/erworbene zystische Nierengeneration

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Evidenzbasiertes Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-</td>
<td>Patienten mit terminaler Niereninsuffizienz haben ein erhöhtes Risiko für die Entwicklung von Nierenzellkarzinomen.</td>
</tr>
</tbody>
</table>

Literatur: [25]
Starker Konsens

Hintergrund
In einer Register-basierten Studie lag die beobachtete Inzidenz für Nierenzellkarzinome bei Patienten mit terminaler Niereninsuffizienz (n=4.161) um das Vierfache höher als die basierend auf den Daten der Normalpopulation erwartete Inzidenz [25]. Allerdings liegen zu dieser Frage keine Kohortenstudien vor.
3.3.2. Hereditäre Tumorsyndrome mit erhöhtem Risiko für das Auftreten von Nierenzellkarzinomen

<table>
<thead>
<tr>
<th>3.4.</th>
<th>Konsensbasiertes Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Patienten, bei denen der klinische Verdacht auf ein hereditäres Nierenzellkarzinom besteht, sollen auf die Möglichkeit einer genetischen Beratung hingewiesen werden.</td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Hintergrund

Eine familiäre Häufung von Nierenzellkarzinomen ist wiederholt beschrieben worden. Der Anteil familiärer Fälle wird mit etwa 4 % angegeben [26]. Das Risiko erst- oder zweitgradiger Verwandter eines Patienten mit einem Nierenzellkarzinom ebenfalls an einem Nierenzellkarzinom zu erkranken, ist ca. um den Faktor 2-4 erhöht [27-29].

In 1 % bis maximal 4 % aller Nierenkarzinome lassen sich ursächliche Keimbahnmutationen als Nachweis eines hereditären Tumorleidens nachweisen [30]. In der genetischen Datenbank der Johns-Hopkins-Universität (Online Mendelian Inheritance in Man, OMIM) finden sich bislang vier molekulargenetisch definierte Syndrome, die mit einer Risikoerhöhung für die Entstehung von Nierenzellkarzinomen einhergehen: das von Hippel-Lindau-Syndrom (VHL, OMIM #193300), Birt-Hogg-Dubé-Syndrom (BHD, OMIM #135150), die Hereditäre Leiomyomatose und Nierenzellkrebs (HLRCC, OMIM #150800) sowie das Hereditäre Papilläre Nierenzellkarzinom (HPRCC, OMIM #605074) [31].

von Hippel-Lindau-Syndrom

Birt-Hogg-Dubé-Syndrom

Das Birt-Hogg-Dubé-Syndrom ist eine seltene Genodermatose, für die keine genauen Prävalenzdaten angegeben werden können. Phänotypisch ist das Syndrom v. a. durch eine Vielzahl von Haut- und Haarausfälle gekennzeichnet sowie das Auftreten von Lungenzysten und Spontanpneumothoraces. Etwa 25 % der Genträger entwickeln Nierentumoren unterschiedlicher histologischer Typen, am häufigsten treten chromophobe und onkozytische Hybridformen auf [33]. Ursächlich liegen dem dominant erblichen Syndrom Mutationen im Folliculin-Gen zugrunde [34].

Hereditäre Leiomyomatose und Nierenzellkrebs

Hereditäres papilläres Nierenzellkarzinom (HPRCC)

Das hereditäre papilläre Nierenzellkarzinom ist gekennzeichnet durch das Auftreten multipler bilateraler papillärer Nierentumoren. Ursächlich liegen der sehr seltenen Erkrankung Keimbahnmutationen im MET-Proto-Onkogen zugrunde. Histologisch treten zumeist papilläre Karzinome vom Typ 1 auf, dessen Prognose günstiger ist als beim für das HPRCC typischen Typ 2 [36].
4. Diagnostik, Prognosemarker und -scores (klinisch, molekular)

4.1. Diagnostik

4.1.1. Bildgebung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Für die präoperative Diagnostik soll zum lokalen Staging und zur Resektionsplanung des primären Nierenzellkarzinoms eine Computertomographie nativ von Leberkuppe bis Symphyse sowie mit früharterieller (Nieren bis Beckeneingang) und venöser Phase von Leberkuppe bis Symphyse nach einheitlichen Standards durchgeführt werden.</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>1+</td>
</tr>
<tr>
<td>Literatur: [37-39]</td>
<td></td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

4.2. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Evidence</td>
<td>1+</td>
</tr>
<tr>
<td>Literatur: [40-42]</td>
<td></td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Hintergrund Empfehlung 4.1

Mit der Zunahme der inzidentellen Detektion von Nierenzellkarzinomen nimmt die Größe bei Primärdiagnose immer weiter ab. Dies führt zu differentialdiagnostischen Schwierigkeiten, da die typischen Zeichen eines klaronernen Nierenzellkarzinoms wie Cavazapfen, Metastasen und Nekrosen fehlen können. Die hochaufgelöste Bildgebung in Multislice-CT und MRT erlaubt auch kleine und chromophobe Tumoren sicher zu detektieren [43], bei dem Staging zeigten sich bei vergleichenden Studien von MRT und Mehrzeilen-CT keine signifikanten Unterschiede zwischen MRT und CT bei der Staginggenauigkeit in einer prospektiven Studie mit 82 Tumoren (accuracy zwischen 0,78 und 0,87 bei zwei Readern), wobei vor allem die Infiltration ins perirenale Fettgewebe zu Fehlbeurteilungen führte [38]. Die CT hat sich als Standardverfahren zur Beurteilung kleiner Tumoren etabliert [44], während bei V. a. Cavazapfen eine MRT durchgeführt werden sollte, da hier die Tumorausdehnung besser beurteilt werden kann. Eine CT-Untersuchung zur präoperativen Abklärung des Nierenzellkarzinoms soll nativ von der Leberkuppe bis zur Symphyse oder gleich mit Thorax-CT durchgeführt werden. Anschließend soll eine früharterielle CT-Spirale des Oberbauches von der Leberkuppe bis...
zum Beckeneingang durchgeführt werden, um auch kleine multifokale Herde in der Phase der Markrinden differenzieren zu können. Gleichzeitig können so Metastasen durch die Hypervaskularisation erkannt werden.

Eine venöse Phase schließt sich von der Leberkuppe bis zur Symphyse an, um die Tumorausdehnung venös und ggf. Lymphknoten zu erkennen.

Die native, arterielle und venöse Spirale sollte maximal in 2-mm-Schichtdicke rekons- truiert werden.

Weitere Differenzierung ist mit der MRT möglich, siehe Hintergrundtext zu Empfehlung 4.2

Resektionsplanung

Für die Resektionsplanung eines Nierentumors hat sich die CT bei höherer Ortsauf- lösung als Goldstandard etabliert. Neuere Studien weisen eine hohe Genauigkeit bei der Beurteilung der Infiltration des perirenalaren Fettes auf [45]. Es zeigt sich jedoch, dass auch die CT bei der Frage nach Infiltrationen intrarenal nicht sehr prädiktiv ist [46]. PADUA und R.E.N.A.L. oder C-Index sind ebenfalls gut mit der CT zu beurteilen.

Hintergrund Empfehlung 4.2

Hier sollte neben nativen T1-Sequenzen eine hochaufgelöste axiale T2-Sequenz von der Vorhofebene bis zum Nierenunterrand durchgeführt werden, da sich diese Sequenz für die Ausdehnungsbestimmung des Cavazapfens sehr gut eignet.

Bei ausgedehnten Tumoren mit Cavazapfen hat die MRT sich überlegen in der Abgrenzung des kranialen Tumorthrombusrandes gezeigt, da die MRT den Zapfen auch ohne Zuström von Kontrastmittel abgrenzen kann. In mehreren Studien wurden hier die MRT und die Multislice-CT untersucht [40-42]. Die Sensitivität und die Spezifität bei der Beurteilung des Cavazapfens lag bei 0,93 und 0,8 für die CT und 1,0 und 0,83 für die MRT.

Über die Nieren, die Nierenvenen und die Cava inferior sollte eine koronare Angio- sequenz nativ, früharteriell und venös gefahren werden, da sich hiermit die lokale Ausdehnung und die Cavaausbreitung gut darstellen lassen. Gleichzeitig werden in der früharteriellen Phase hypervaskularisierte Metastasen des klarzelligen Karzinoms entdeckt.

Die früharterielle Phase in der MRT erlaubt eine Abgrenzung hypervaskularisierter Metastasen (v. a. Pankreas und gegenseitige Niere).

Es bleibt die eingeschränkte Aussage bezüglich Malignität und Grading. Hier scheinen Diffusions- und Perfusionsuntersuchungen einen Anhalt sowohl für das Grading als auch für die weitere Differenzierung zu liefern [47]. Mit der früharteriellen Phase ist auch die Detektion von kleinen und von Rezidivtumoren nach Resektion möglich [37, 48].

Sonographie, Ausscheidungsurogramm und Angiographie scheinen in früheren Studien kein sicheres Staging zu erlauben [49, 50].
4.1.2. Biopsie

<table>
<thead>
<tr>
<th>4.3.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Biopsie einer unklaren Raumforderung der Niere sollte nur erfolgen, wenn dies die Therapiewahl beeinflussen könnte.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.4.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Eine Biopsie soll vor ablativer Therapie durchgeführt werden.</td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.5.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Zystische Raumforderungen sollten nicht biopsiert werden.</td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.6.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Wenn bislang keine histopathologische Sicherung eines Nierenzellanonymos und des Subtyps vorliegt, soll eine Biopsie aus dem Primarius oder einer Metastase vor systemischer Therapie erfolgen.</td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.7.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Bei metastasierter Erkrankung kann vor geplanter zytoreduktiver Nephrektomie eine Biopsie durchgeführt werden.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.8.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Biopsie soll als Stanzzyylinderbiopsie erfolgen. Es sollten mindestens 2 Biopsien unter Ultraschall- oder CT-Kontrolle entnommen werden.</td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>
Hintergrund

Die Nierentumorbiopsie wurde in den letzten Jahren zunehmend für folgende Fragestellungen evaluiert:

- Zur histologischen Sicherung und Klassifikation von primären Tumoren der Niere unklarer Dignität
- Zur histologischen Sicherung vor systemischer Therapie, wenn kein histopathologischer Befund des Primärtumors vorliegt. Ziel hierbei ist, die Indikation zur Therapie mittels Targeted Therapien abzusichern und ggf. eine auf den Subtyp optimierte Therapie zu wählen.
- Um andere Nierenraumforderungen wie Abszess, Lymphom oder eine Metastase bei bekanntem oder vermutetem extrarenalen Primärsitz auszuschließen.

Hinsichtlich der Indikationsstellung zur Biopsie vor einer geplanten Operation gilt der prinzipielle Grundsatz, dass keine invasive Diagnostik ohne ggf. folgende Konsequenz durchgeführt werden sollte. Sofern Therapeut und/oder Patient unabhängig vom Biopsieergebnis ohnehin die (organerhaltende) operative Therapie eines Tumors anstreben – z. B. aufgrund der Größe des Befundes, Angst vor falsch negativen Biopsiebefunden etc. – ist keine präoperative Biopsieindikation gegeben. Auf der anderen Seite ist bei T1-T2-Tumoren, bei denen dennoch a priori eine komplette Nephrektomie geplant oder die Konversion zu dieser im Rahmen einer organerhaltenden Operation nicht unwahrscheinlich ist, die Indikation eher großzügig zu stellen. In einer retrospektiven Analyse bei 204 Patienten hatten Tan et al. unabhängige Risikofaktoren identifiziert, bei denen signifikant häufiger eine Indikation zur Biopsie vor der Operation gestellt wurde. Dies waren ein erhöhter BMI (> 25), eine Hilus-nahe Lokalisation und komplexe Tumore (R.E.N.A.L. Score > 9) [51, 52].

Die präoperative Biopsie kann die Sicherung eines benignen Befundes vor einer ursprünglich geplanten Operation ermöglichen und damit potenziell die Anzahl an Operationen bei nicht malignen Nierentumoren reduzieren. Volpe et al. fanden hierzu in der Literatur eine beschriebene Reduktion der Operationen im Allgemeinen um ca. 16 %, bei jedoch persistenter Gefahr einer Untertherapie aufgrund falsch negativer Einschätzung [53].

Datenlage systematische Reviews/Metaanalysen

Insbesondere aufgrund der zunehmenden Anzahl an neu diagnostizierten kleinen Raumforderungen der Niere (Englisch: small renal mass; Abkürzung SRM) und der alternativen Therapiemodalitäten für diese SRMs ist die Literatur zur Biopsie mittlerweile als umfangreich zu werten.

Neben zahlreichen Einzelpublikationen wurden hierzu 3 Review-Artikel veröffentlicht:

Technische Aspekte

Die Biopsie kann als Stanz- oder Aspirationsbiopsie durchgeführt werden, wobei die diagnostische Sicherheit bei Stanzbiopsien in der Regel höher, die Interpretation weniger untersucherabhängig und die Beurteilung von Grad und Subtyp häufiger möglich ist [53, 56].

Aktuelle Arbeiten beschreiben eine Verbesserung der Aussagekraft durch die Kombination der Feinnadel-Aspirationszytologie mit der Biopsie [57-59] (Methodik: ex-vivo, prospektiv n=57; rand. prospektiv n=90; retrospektiv n=290). Jedoch basieren die weit überwiegende Mehrzahl der veröffentlichten Daten und deren Metaanalysen auf der Methodik der Stanzbiopsie und deren Ergebnissen. Zudem lag in der Arbeit von Barwarri et al. die Streubreite zwischen den 5 untersuchenden Pathologen bei der Aspirationszytologie zwischen 72 % und 93 % korrekter Einschätzungen, während sie für die Befundung der Stanzbiopsie nur zwischen 81 % und 90 % varierte.

Bei fehlender Evidenz aus einem direkten, prospektiven Vergleich zwischen sonographischer und CT-graphischer Steuerung der Biopsie ist für den individuellen Fall das am geeignetsten erscheinende Verfahren zu wählen [53].

Ergebnisse

In einer Zusammenschau von 9 großen Biopsie-Serien (insgesamt n=1330 Tumore) aus den letzten 10 Jahren zeigt sich eine diagnostische Genauigkeit („Accuracy“) zum Nachweis eines malignen Tumors zwischen 86 % und 100 % bzw. eine Sensitivität von 93,5-97,7 % bei einer Spezifität von 100 % [53]. Für den histologischen Subtyp eines Nierenzellkarzinoms wird die Aussagegenauigkeit zwischen 86 % und 100 %, für die korrekte Bewertung des Gradings nur zwischen 46-76 % der Fälle aus den 9 aufgeführten Serien zitiert. Der Anteil der als „diagnostisch“ bewerteten Biopsien betrug zwischen 78 % und 100 %.
In der Metaanalyse von Lane et al. errechnen die Autoren eine diagnostische Genauig-
keit hinsichtlich der Diagnose eines Karzinoms von 88,9 % (Range 40-100 %) für die
Biopsie-Serien vor 2001, verglichen mit einer Genauigkeit von 96 % (Range 93-100 %)
für die Serien nach 2001. Die für die Serien nach 2001 errechneten Prozentsätze an
Biopsien, die entweder keine ausreichende Gewebegewinnung erzielten oder nicht suf-
fizient pathologisch beurteilt werden konnten, betrugen 5,2 % und 3,8 % [54].

In der Literaturübersicht von Phé, die z. T. mit obigen Arbeiten sich überschneidende
Quellen aufweist, wurden ebenfalls die Ergebnisse von 16 Arbeiten mit insgesamt
1442 Tumoren zusammengefasst. Der errechnete Mittelwert bezüglich des positiv prä-
diktiven Wertes (PPV) der Biopsie lag hierbei bei 100 %, der des negativ prädiktiven
Wertes (NPV) bei 75 % und die mittlere Aussagegenauigkeit lag bei 94,5 % für die Diag-
nose eines Nierenzellkarzinoms. Die Aussagegenauigkeiten hinsichtlich Tumorgrad
und Tumor-Subtyp lagen im Mittel bei 72,4 % und 89,5 %. Der Prozentsatz der nicht-
diagnostischen Biopsien wurde mit 11 % gemittelt [55].

Hinsichtlich der Wertigkeit einer Re-Biopsie bei Vorliegen einer initial nicht-
diagnostischen Biopsie beschreiben Menogue et al. in einer aktuellen retrospektiven
Analyse eine Erfolgsrate von 94 % (16/17) [63]. Ähnliche Werte werden durch Leveridge
beschrieben (83 %, n=10/12) [64].

Abel et al. fanden retrospektiv eine signifikant höhere Aussagekraft für eine aus dem
Primärtumor entnommene Biopsie (n=166), verglichen mit Biopsien aus einer Metasta-
se (n=239) [65]. Die ebenfalls untersuchte Sensitivität der Biopsien zur Detektion einer
sarkomatoiden Dedifferenzierung eines Tumors betrug lediglich 7-11 % (Spezifität:
99 %), die Übereinstimmung des Fuhrman-Grades zwischen Biopsie und Operations-
präparat war in dieser Serie nur in 38 % gegeben. Im selben Jahr (2012) beschrieben
Menogue et al. in einer retrospektiven Serie von 268 SRM ebenfalls die Fuhrman-Grad-
Konkordanz. Hier betrug der Anteil an identisch zum Hauptpräparat befundenen Biop-
sien 69 %, während 24 % bzw. 7 % der 72 untersuchten cT1a-Tumore up- bzw. down-
gegraded wurden [63].

In Zukunft könnte der Einsatz von molekularen Markern an der Biopsie einerseits in
unklaren Fällen zur Diagnosesicherung, andererseits zur Differenzierung der Prognose
und damit zur Therapieentscheidung beitragen. Die unbefriedigende Aussagekraft der
Biopsie beim Grading könnte hierdurch potentiell objektivierbarer und präziser wer-
den.

Zystische Tumoren

Die Biopsie von zystischen Tumoren gilt bislang als kontraindiziert. Grund hierfür ist
tum einen die vermeintlich geringe Wahrscheinlichkeit, in einer zystischen Läsion ge-
rade die soliden Anteile des Befundes mit einer Biopsie zu erfassen, die den Aus-
schluss eines malignen Befundes zulassen. Zum anderen besteht bei der Punktion ei-
nes zystischen Nierenzellkarzinoms potentiell die Gefahr, dass es durch Austritt der
Zystenflüssigkeit im Rahmen der Punktion zu einer Verbreitung von Tumorzellen
kommen kann.

Konträr hierzu wird die Punktion zystischer Tumoren in einigen Arbeiten befürwortet
und hierfür auch eine hohe Aussagekraft postuliert [66-68]. Jedoch fehlt in diesen ret-
rospektiven Studien eine dezidierte Analyse, ob durch die Punktion zystischer Tumoren
ein erhöhtes Risiko für Lokalrezidive oder Tumorseeding besteht. Die beschriebenen
Nachsorgeintervalle besitzen hierzu auch keine ausreichende Aussagekraft: Bei Lang et
al. waren 12 % der untersuchten Patienten Lost in Follow-up, das mediane Follow-up

Hinsichtlich der diagnostischen Aussagekraft sind die Ergebnisse der publizierten Literatur im Vergleich zur Biopsie solider Tumore insgesamt uneinheitlich [53]. Vor dem Hintergrund des ungeklärten Sicherheitsaspektes und in Analogie zum chirurgischen Grundsatz, zystische Tumoren im Rahmen einer Operation möglichst nicht zu eröffnen, erscheint dies auch unabhängig von der grundsätzlichen Frage der Aussagekraft Begründung genug, weiterhin die Biopsie von zystischen Tumoren in der Regel der Fälle als kontraindiziert anzusehen.

Sicherheit

4.1.3. Pathologie

<table>
<thead>
<tr>
<th>4.9.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Der histologische Typ des Nierenzellkarzinoms soll nach der aktuellen WHO-Klassifikation bestimmt werden. Zusätzliche in der Vancouver-Klassifikation der Nierenzellkarzinome der Internationalen Gesellschaft für Urologische Pathologie (ISUP) empfohlene Tumortypen sollen diagnostiziert werden. Dies betrifft insbesondere folgende neue Kategorien epithelialer Tumoren:</td>
</tr>
<tr>
<td></td>
<td>• Tubulocystisches Nierenzellkarzinom,</td>
</tr>
<tr>
<td></td>
<td>• Nierenzellkarzinom assoziiert mit einer erworbenen zystischen Nierenerkrankung,</td>
</tr>
<tr>
<td></td>
<td>• Klarzelliges papilläres Nierenzellkarzinom,</td>
</tr>
<tr>
<td></td>
<td>• Translokations-assozierte Nierenzellkarzinome,</td>
</tr>
<tr>
<td></td>
<td>• Nierenzellkarzinome assoziiert mit einer hereditären Leiomyomatose.</td>
</tr>
</tbody>
</table>

starker Konsens
4.10. Konsensbasierte Empfehlung

EK

starker Konsens

4.11. Konsensbasierte Empfehlung

EK

Chromophobe Nierenzellkarzinome sollten nicht graduiert werden.

starker Konsens

4.12. Konsensbasierte Empfehlung

EK

Das papilläre Nierenzellkarzinom sollte in zwei Untergruppen eingeteilt werden (Typ 1 und Typ 2).

Starker Konsens

4.13. Konsensbasierte Empfehlung

EK

Eine sarkomatoider und/oder rhabdoide Differenzierung des Nierenzellkarzinoms soll falls vorhanden angegeben werden.

starker Konsens

Hintergrund zu 4.9 bis 4.13

Die Empfehlungen basieren auf Expertenkonsens und bestehenden Leitlinien (4.9: [69, 70]; 4.10: [69, 71]; 4.11: [71]; 4.12: [69, 70]; 4.13: [69, 71]).

4.1 Diagnostik

Nierenzelltumoren
Papilläres Adenom
Onkozytom
Klarzelliges Nierenzellkarzinom
- Multilokulärer zystischer Nierenzelltumor mit niedrig malignem Potential
Papilläres Nierenzellkarzinom
Chromophobes Nierenzellkarzinom
Sammelgang-Karzinom
Renales medulläres Nierenzellkarzinom
MIT-assoziiertes Translokations-Nierenzellkarzinom
- Xp11-Translokations-Nierenzellkarzinom
- t(16;11)-Nierenzellkarzinom
Muzinoses tubuläres und spindelzelliges Nierenzellkarzinom
Tubulozystisches Nierenzellkarzinom
Nierenzellkarzinom assoziiert mit einer erworbenen zystischen Nierenerkrankung
Klarzelliges papilläres Nierenzellkarzinom
Nierenzellkarzinom assoziiert mit hereditärer Leiomyomatose
SDH-B-Defizienz-assoziiertes Nierenzellkarzinom
Nierenzellkarzinom, NOS

Metanephrische Tumoren
Metanephrisches Adenom
Metanephrisches Adenofibrom
Metanephrischer Stromatumor

Nephroblastische Tumoren
Nephrogene Reste
Nephroblastom
Zystisches partiell differenziertes Nephroblastom

Mesenchymale Tumoren bei Kindern
Klarzell-Sarkom
Rhabdoid-Tumor
Kongenitales mesoblastisches Nephrom
Ossifizierender renalcr Tumor des Säuglingsalters

Mesenchymale Tumoren bei Erwachsenen
Angiomyolipom
Epiteloides angiomyolipom
Myom
Hämangiomi
Leiomyom
Lymphangiomi
Juxtakomularzelltumor
Renomedullärer interstitieller Tumor
Schwannom
Solitärer fibröser Tumor
Primitiver neuroektodermaler Tumor
Synoviales Sarkom

Gemischte mesenchymale und epitheliale Tumoren
Zystisches Nephrom/Gemischter epithelialer Stromatumor (MEST)
Neuroendokrine Tumoren
- Low-grade neuroendokriner Tumor (Karzinoid)
- High-grade neuroendokriner Tumor (Neuroendokrines Karzinom)
- Neuroblastom
- Phäochromozytom

Hämatopoetische und lymphoide Tumoren
- Lymphom
- Leukämie
- Plasmozytom

Keimzelltumoren
- Teratom
- Chorionkarzinom

Metastatische Nierenzellkarzinome

Weiterhin wurde festgelegt, dass chromophobe Nierenzellkarzinome zur Zeit nicht gradiert werden sollten. Insbesondere das Fuhrman-Grading ist für chromophobe Nierenzellkarzinome nicht geeignet.

Es wurden weitere histopathologische Faktoren diskutiert. Dabei ist eine sarkomatoide und rhabdoide Differenzierung eindeutig mit einer schlechteren Prognose assoziiert und soll angegeben werden.

Der Anteil der Nekrosen ist zurzeit der einzige histopathologische Faktor für eine schlechtere Prognose und sollte im histopathologischen Befund angegeben werden. Für eine mikrovaskuläre Invasion in Lymph- und Blutgefäße als Prognosefaktor reicht zurzeit die Evidenz nicht aus.

4.1.4. Ausbreitungsdiagnostik

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Bei asymptomatischen Patienten mit malignen Tumoren über 3 cm sollte ein Thorax-CT durchgeführt werden.</td>
</tr>
<tr>
<td></td>
<td>Konsens</td>
</tr>
</tbody>
</table>
4.15. Konsensbasierte Empfehlung

EK

Bei klinischem Anhalt für ossäre Metastasen soll eine Bildgebung durchgeführt werden. Dabei soll der Ganzkörper-CT (Low-Dose) oder der –MRT der Vorzug vor der Skelettszintigraphie gegeben werden.

Konsens

4.16. Konsensbasierte Empfehlung

EK

Bei Patienten mit Nierenzellkarzinom und Verdacht auf zerebrale Metastasen soll eine kontrastmittelverstärkte Schädel-MRT durchgeführt werden.

Starker Konsens

Hintergrund

Bei Tumoren ab 3 cm sollte ein Thorax-CT durchgeführt werden, da dann die Wahrscheinlichkeit einer Metastasierung ansteigt. Die CT hat die wesentlich höhere Sensitivität und Spezifität beim Nachweis von pulmonalen Metastasen [44, 72-74]. Eine Schädel-MRT soll bei klinischem Verdacht durchgeführt werden, da diese besser geeignet ist, die Metastase und das Ödem im Hirn darzustellen.

4.2. Prognosemarker und -scores

4.2.1. Prognosescores

4.17. Konsensbasiertes Statement

EK

Performance Status, das Auftreten von Metastasen in Abhängigkeit vom Zeitpunkt und vom Ort, Symptome, hämatologische Parameter (Hb-Wert, Anzahl der Thrombozyten, Neutrophilen), LDH sind klinische prognostische Faktoren.

Konsens

4.18. Evidenzbasiertes Statement

Level of Evidence 2++

Es existieren für verschiedene Zeitpunkte des Krankheits- und Therapieverlaufs beim Nierenzellkarzinom validierte multifaktorielle Modelle, die in ihrer Aussagegenauigkeit präziser sind als einzelne Tumorcharakteristika.

Literatur [75-117]

Starker Konsens
4.3 Nomogramme

4.19. Konsensbasiertes Statement

EK

Starker Konsens

Hintergrund

4.3. Nomogramme

Präambel

Wichtigstes Gütekriterium für den klinischen Nutzen eines multivariablen Prognosemodells ist der Nachweis der Zunahme der Vorhersagegenauigkeit über die einer univariablen Kenngröße hinaus. Ein akzeptiertes Maß ist hier z. B. der sogenannte Concordance Index (C-Index) für zeitabhängige Endpunkte (z. B. Überleben) [119]. Mit einem Wert von 1 bzw. 100 % wäre eine ideale Vorhersagegenauigkeit beschrieben. Ein Wert von 0,5 bedeutet, dass das Modell nur die Sicherheit eines Münzwurfes aufweist. Werte zwischen 0,5-0,7 gelten als gering akkurat, zwischen 0,7-0,9 als akzeptabel und bei Werten > 0,9 ist eine sehr hohe Präzision gegeben [120].

Im Folgenden werden diejenigen Modelle beschrieben, für die neben der primären Entwicklung mit Nachweis eines Zuwachses an prognostischer Aussagekraft auch eine Validierung publiziert wurde. Diese besitzen damit einen Nutzwert im Sinne einer verbesserten individuellen Prognoseabschätzung, die per externer Validierung erwiesen werden können. Letztere sind auch auf andere Patientenkollektive übertragbar. Solche Modelle existieren für die Zeitpunkte pra- und postoperativ sowie vor Initiierung einer systemischen Therapie.

Für die klinische Anwendbarkeit ist neben der Aussagegenauigkeit auch die Quantität und Qualität der Variablen sowie die Form der Umsetzung (Entscheidungsbaum, Formel, Nomogramm) maßgeblich. Letztere bestimmt die „Benutzerfreundlichkeit“ in der Anwendung und die Einteilung in Risikogruppen (kategorisierte vs. kontinuierliche Risikodarstellung).

Weist ein Modell darüber hinaus eine außerordentlich hohe Verbreitung im Rahmen einer Fragestellung auf, so begünstigt dies die Vergleichbarkeit von unterschiedlichen Studien zu dieser Fragestellung unabhängig davon, ob das Modell das präziseste in diesem Setting ist (z. B. MSKCC- oder Motzer-Score bei systemischen Therapien).

4.4. **Präoperative Modelle**

4.4.1. Cindolo-Formel

Cindolo et al. entwickelten eine Formel anhand präoperativer Variablen zur Vorhersage des Rezidivrisikos bei geplanter Operation [77]:

- Risikowert=1,28 x Symptompunkte + 0,13 x Tumordurchmesser (in cm)
- Symptompunkte: asymptomatisch=0; symptomatisch=1

Der daraus resultierende Risikowert ermöglicht eine signifikante (p < 0.001; Wilcoxon-Test) Aufteilung in eine der 2 Risikogruppen:

- ≤ 1,2=niedriges Risiko: 2- und 5-Jahres-Rezidivfreiheit 96 % bzw. 93 %
- > 1,2=hohes Risiko: 2- und 5-Jahres-Rezidivfreiheit 83 % bzw. 68 %

Externe Validierung

Siehe UISS-Validierung [78].

Offensichtlich ist ein Model basierend auf präoperativen Variablen einem postoperativen Modell unterlegen, da Letzteres u. a. über die präziseren pathologischen Informationen zur T-Kategorie verfügen kann. Zudem kategorisiert diese Formel lediglich in 2 Gruppen, was die Präzision verringert, die Praktikabilität im Vergleich zu einer kontinuierlichen Risikoabschätzung z. B. eines Nomogramms aber erhöht.

4.4.2. Yaycioglu-Formel

Sehr ähnlich der Cindolo-Formel publizierten Yaycioglu et al. eine einfache Formel zur Berechnung des Rezidivrisikos bei geplanter Tumornephrektomie, ebenfalls basierend auf klinischem Erscheinungsbild und Tumordurchmesser [79]:

- Risikowert=1,55 x Symptompunkte + 0,19 x maximaler Durchmesser (in cm)
- Symptompunkte: asymptomatisch=0; symptomatisch=1

Der daraus resultierende Wert ermöglicht eine statistisch signifikante (p < 0.001; Wilcoxon-Test) Auf trennung in 2 Risikogruppen:

- ≤ 3=niedriges Risiko: 2- und 5-Jahres-Rezidivfreiheit 98 % bzw. 92 %
- > 3=hohes Risiko: 2- und 5-Jahres-Rezidivfreiheit 67 % bzw. 57 %

Externe Validierung

Siehe auch hier UISS-Validierung. Bei Betrachtung des Endpunktes „Gesamtüberleben“ war die Konkordanz (C-Index) mit 0,589 vs. 0,615 bei der Yaycioglu- im Vergleich zur
Cindolo-Formel geringfügig schlechter [78]. Es gelten die gleichen Einschränkungen, die oben bei der Cindolo-Formel beschrieben wurden.

4.4.3. Karakiewicz präoperative Nomogramme

Siehe Kapitel 4.2.

4.5. Postoperative Modelle

4.5.1. UCLA Integrated Staging System (UISS-Model)

Das von Zismann et al. beschriebene UISS-Model kategorisiert Patienten in Risikogruppen hinsichtlich ihrer Prognose zum Endpunkt Gesamtüberleben (OS) [80]. Es wurde kurze Zeit später anhand eines größeren Kollektivs auch hinsichtlich der Endpunkte Progressionsfreiheit und krebsspezifisches Überleben (CSS) validiert und dann von den Autoren durch eine „decision box“ vereinfacht [81, 82]. Hierbei existiert je eine Modell-Variante für nicht metastasierte und metastasierte Krankheitsverläufe, die dann jeweils in einer Art Entscheidungsbaum zu einer Risikoklasse führen (low, intermediate, high).

Als Besonderheit wurde später durch die Arbeitsgruppe ein risikogruppenadaptiertes Nachsorgeschema anhand der beobachteten Lokalisationen, Zeitpunkte und Häufigkeiten für ein Rezidiv entwickelt [83]. Dieses stellt die einzige Nachsorgeempfehlung beim Nierenzellkarzinom dar, die auf einer statistischen Auswertung metastasierter Verläufe basiert. Siehe hierzu auch Kapitel 10.2.

Endpunkte: Gesamt- und tumorspezifisches Überleben, Progressionsfreiheit

Population: Alle histologischen Subtypen

Faktoren im Modell:

- T-Kategorie (1997), N-Kategorie und M-Kategorie
- ECOG-Performance Status
- Fuhrman-Grad

Informationsqualität am Entwicklungsdatensatz: keine Angaben

Informationsqualität bei Validierung an einem zweiten, erweiterten Datensatz: keine Angabe (nur Plots) [82]

Externe Validierungen

In einer Kurzveröffentlichung präsentierten die Autoren eine Validierung an einem erweiterten Datensatz, bei dem aber keine Angaben zur Konkordanz gemacht wurden, sondern nur Plots dargestellt sind [82].

Cindolo et al. verglichen in einer externen Validierungsstudie das UISS-Model, das Kattan-Nomogramm, die Yaycioglu-Formel und ihre eigene Formel [78]. Die beobachteten Konkordanz-Raten (C-Indices) für den Endpunkt OS waren 0,706 (Kattan), 0,683 (UISS), 0,615 (Cindolo) und 0,589 (Yaycioglu).

Cindolo et al. führten zudem eine zweite, separate externe Validierung des UCLA-Modells durch [84]. Hier zeigte sich, dass das Modell generell eine zu kurze, also schlechtere Prognose hinsichtlich des OS abgab, als dies in der Validierungskohorte
tatsächlich beobachtet wurde. Dies galt insbesondere für die Extreme. Hinsichtlich der Fähigkeit, die Risikogruppen zu diskriminieren, wurde aber eine gute Trennschärfe beobachtet, weshalb die Autoren eine Neukalibrierung des Modells empfohlen [84].

An einer sehr großen Kohorte von 4.202 Patienten aus 8 internationalen Zentren wurde eine weitere Validierung des UISS-Models durchgeführt [85]. Mit einem Gesamt-C-Index von 0,809 bewies das Modell eine gute Vorhersagegenauigkeit für die Gruppe der lokalisierten Tumore, für die Gruppe der metastasierten Patienten lag der Wert aber nur bei 0,651.

Eine weitere Validierung an 2 europäischen und dem erweiterten UCLA-Datensatz wurde von Han et al. publiziert [86]. Auch hier konnte für das Modell eine hohe Konkordanz von 79-86 % festgestellt werden. Die Gruppe der insgesamt 1.060 Patienten umfasste nur lokalisierte Tumore.

Ficarra et al. führten eine externe Validierung und einen Vergleich mit dem SSIGN-Score durch (siehe Kapitel 4.5.7.) [87].

4.5.2. Karakiewicz-Nomogramme

Von der Arbeitsgruppe aus Montreal wurden zum Nierenzellkarzinom 5 Nomogramme publiziert: zwei zur Abschätzung des Risikos für das Vorhandensein von Metastasen, eines zur CSS-Einschätzung prä- und eines postoperativ sowie ein weiteres Nomogramm für die Prognoseabschätzung unter targeted therapy mit Bevacizumab. Letzteres wurde aber bislang nicht validiert und wird im Sinne der Fragestellung nach validierten Modellen deshalb hier nicht näher erörtert.

4.5.3. Präoperatives Nomogramm „distante Metastasen“

Endpunkt: Prädiktion des Vorhandenseins distanter Metastasen

Faktoren im Nomogramm:

- Tumordurchmesser
- Symptome

Konkordanz bei Validierung an einem zweiten, externen Datensatz: 85,2 % [88]

4.5.4. Präoperatives Nomogramm „nodale Metastasen“

Endpunkt: Prädiktion des Vorhandenseins nodaler Metastasen

Faktoren im Nomogramm:

- Tumordurchmesser
- Alter
- Symptomatik

Konkordanz bei Validierung an einem zweiten, externen Datensatz: 78,4 % [89]
4.5.5. **Präoperatives Nomogramm**
Endpunkt: Nierenzellkarzinom-spezifisches Überleben

Faktoren im Nomogramm:

- Alter
- Geschlecht
- klinisches T-Stadium
- Vorhandensein einer Metastasierung
- Tumordurchmesser
- Symptome

Konkordanz bei Validierung an einem zweiten, externen Datensatz: 86,8 % (2 Jahre), 86,8 % (5 Jahre) [90].

4.5.6. **Postoperatives Nomogramm**
Endpunkt: Nierenzellkarzinom-spezifisches Überleben

Faktoren im Nomogramm:

- T-Stadium (2002), N- und M-Status (je 0 vs. 1)
- Tumordurchmesser
- Fuhrman-Grad
- Symptome

Konkordanz am Entwicklungsdatensatz: 86,3 %. Konkordanz bei Validierung an einem zweiten, externen Datensatz: 89,2 % (2 Jahre postoperativ), 86,7 % (5 Jahre). Vergleich mit UISS-Score bei Validierung am externen Datensatz: UISS-Konkordanz 86,1 % (2 Jahre), 83,9 % (5 Jahre) [91].

Externe Validierungen

Neben der durch die Autoren jeweils selbst durchgeführten Validierung Ihrer Nomogramme an je einem zusätzlichen Datensatz (nicht für die Entwicklung verwendet), wurde eine externe Validierung der beiden Letztgenannten mit einem Datensatz von 3911 europäischen Patienten durch Cindolo et al. durchgeführt [92]. Hier bestätigte sich eine gute Vorhersagegenauigkeit der perioperativen Nomogramme mit einem Harrell-C-Index von 0,783 (0,753-0,814) für das prä- und 0,842 (0,816-0,867) für das postoperative Nomogramm.

4.5.7. **SSIGN-Score**

Endpunkt: Nierenzellkarzinom-spezifisches Überleben postoperativ

Population: Nur klarzellige Nierenzellkarzinome

Kategorisierte Faktoren im Modell:

- T-Kategorie (1997),
- N (pN0/pNX vs. pN1-2)
- M-Status (0 vs. 1)
- Tumordurchmesser (≥ vs. < 5 cm)
- Fuhrman-Grad
- Tumornekrose vorhanden

Konkordanz am Entwicklungsdatensatz: 0,841

Zu beachten ist, dass die Gruppe der pT4-Tumore trotz offensichtlich ungünstiger Prognose mit einem Punktwert von 0 belegt wurde (pT1 ebenfalls 0, pT3 entspricht 2 Punkten). Diese paradoxe Einstufung resultiert aus einer Überlappung von simultan bestehenden, negativen Faktoren der pT4-Patienten in der Entwicklungskohorte, so dass in der Auswertung das pT-Stadium für diese Patienten letztlich prognostisch irrelevant wurde.

Externe Validierung

Zigeuner et al. validierten retrospektiv den SSIGN-Score an einem großen europäischen Kollektiv mit 1.931 klarzelligen Tumoren (ccRCC) [95]. Der C-Index bezüglich der Prognose des CSS lag bei 0,823.

An einem Datensatz von 388 Patienten (nur klarzelliges Nierenzellkarzinom) validierten und verglichen Ficarra et al. den SSIGN-Score und das UISS-Modell [87]. Die Aussagegenauigkeiten betrugen hierbei 0,87 und 0,832 (SSIGN-Score bzw. UISS). Limitiert auf die nicht-metastasierten Verläufe war die Genauigkeit beider Modelle etwas schlechter (0,830 SSIGN-Score, 0,760 UISS-Model).

4.5.8. **Leibovich-Score**

Endpunkt: metastasenfreies Überleben, postoperativ

Population: Nur klarzellige Nierenzellkarzinome, nur lokalisierte Tumore

Kategorisierte Faktoren im Modell:
- T-Stadium (2002),
- N (pN0 und pNx vs. pN1-2)
- Tumordurchmesser (> vs. < 10 cm)
- Fuhrman-Grad
- Tumornekrose

Konkordanz am Entwicklungsdatensatz: 0,819

Externe Validierung

Wie oben geschildert, wurde von Tan et al. eine externe Validierung durchgeführt, hierbei auch mit den Endpunkten OS und CSS [93]. Das Modell war hinsichtlich der Aussagegenauigkeit dem Karakiewicz-Nomogramm unterlegen.

Pichler et al. führten eine retrospektive externe Validierung an einem großen europäischen Kollektiv mit knapp 1.800 Patienten durch [97]. Das metastasenfreie Überleben wurde hier mit einem Genauigkeit von 0,778 (C-Index) vorhergesagt.

Pichler et al. führten eine zweite Validierung des Leibovich-Scores durch [98]. Neben der Bestätigung des C-Index von 0,79 führten die Autoren zudem eine Berechnung durch, bei der das Modell durch den kategorisierten Faktor „Neutrophilen-Lymphozyten-Verhältnis“ ergänzt wurde. Hierdurch konnten die Autoren die prädiktive Aussagekraft des Leibovich-Scores um 2 % (C-Index: 0,81) erhöhen.

4.5.9. Kattan-Nomogramm

Endpunkt: 5-Jahres-progressionsfreies Überleben postoperativ

Population: Klarzellige, papilläre und chromophobe Nierenzellkarzinome, nur lokalisierte Tumore

Faktoren im Modell:
- T-Kategorie (1997),
- Tumordurchmesser
- Histologischer Subtyp
- Symptome

Konkordanz am Entwicklungsdatensatz („bootstrapping“-Analyse): 0,74

Externe Validierung
Hupertan et al. führten an einem europäischen Kollektiv (n=565) eine externe Vali-
dierung durch [100]. Der C-Index des Kattan-Nomogramms für die Vorhersage des PFS
lag hierbei aber nur bei 0,607.

Cindolo et al. verglichen in einer externen Validierungsstudie das UISS-Model, das Kat-
tan-Nomogramm, die Yaycioglu-Formel und ihre eigene Formel [78] (siehe auch UISS-
Score). Für das Kattan-Nomogramm waren die Konkordanz-Raten (C-Indices) 0,706 (OS)
und 0,771 (CSS). Für den eigentlichen Endpunkt des Nomogramms-progressionsfreies
Überleben-betrug der Wert 0,807, allerdings lagen nur bei 152 der 2.400 Patienten Da-
ten hinsichtlich des Progressionszeitpunktes vor.

Mit der Fragestellung, ob die 2010 durchgeführte Modifikation des TNM-Systems die
Aussagekraft des Kattan-Nomogramms beeinträchtigt, führten Veeratterapillay et al. an
einem kleinen Kollektiv von 291 Patienten eine Validierung durch [101]. Die Autoren
beschrieben keinen signifikanten Unterschied in der Prädiktion bei der Verwendung
des 2002er- und des 2010er-TNM-Systems. Die Publikation weist aber methodische
Schwächen auf (keine ROC-/C-Index-Analyse, Kalibrierungsplots o. ä.).

4.5.10. Sorbellini-Nomogramm

Dieses Nomogramm stellt quasi eine Weiterentwicklung des Kattan-Nomogramms aus
derselben Arbeitsgruppe dar. Es wurde entwickelt, um die 5-Jahres-Rezidivfreiheit bei
Patienten (n=833) mit lokalisiertem klarzelligen Nierenzellkarzinom nach Operation
vorherzusagen [102]. Durch die Beschränkung auf den klarzelligen Subtyp konnten die
Autoren im Vergleich zum Kattan-Nomogramm weitere, für das klarzellige Nierenzell-
karzinom als spezifisch beschriebene, Faktoren integrieren.

Endpunkt: 5-Jahres-rezidivfreies Überleben postoperativ

Population: Nur klarzellige Nierenzellkarzinome, lokализierte Tumore

Kategorisierte Faktoren im Modell:
- T-Stadium (2002)
- Tumordurchmesser
- Fuhrman-Grad
- Tumornekrose
- Gefäßinvasion
- Symptome

C-Index bei Validierung an einem zweiten, externen Datensatz: 0,82

Ähnlich wie beim Kattan-Nomogramm ermittelten die Autoren in der multivariaten Ana-
lyse nur für 2 der 6 Faktoren eine unabhängig prädiktive Aussagekraft (Gefäßinvasion
und Fuhrman-Grad), dennoch wurden auch die anderen Faktoren in das Nomogramm
integriert.

Externe Validierungen

Wie oben geschildert wurde von Tan et al. eine externe Validierung durchgeführt, hier-
bei auch mit den Endpunkten OS und CSS [93]. Das Modell war hinsichtlich der Aussa-
gegenauigkeit dem Karakiewicz-Modell unterlegen.
4.5.11. **Papilläres Nomogramm**
Dieses Nomogramm aus einer multizentrischen Kohorte von ausschließlich papillären Nierenzellkarzinomen wurde 2010 publiziert [103]. Hierzu verwendeten die Autoren 258 Patienten aus 2 Zentren um das Nomogramm zu entwickeln und 177 Patienten eines weiteren Zentrums für die anschließende externe Validierung.

Endpunkt: 5-Jahres-Nierentumor-spezifisches Überleben postoperativ

Population: Nur papilläre Nierenzellkarzinome, lokalisiert und metastasiert

Faktoren im Modell:
- T-Stadium (unklar welche Version, nur Hauptkategorien verwendet (T1-4))
- M-Status
- Gefäßinvasion
- Nekrose
- Symptome (inzidentes vs. symptomatisches Nierenzellkarzinom)

Konkordanz für den Entwicklungsdatensatz („bootstrapping“-Analyse): 93,6 %

Konkordanz für einen separaten Validierungsdatensatz: 94,2 %

Auffällig bei diesem Nomogramm ist die außergewöhnlich hohe Konkordanz, wobei die Autoren auch für z. B. den einzelnen Faktor „T-Stadium“ einen ungewöhnlich hohen C-Index von 81,3 % beobachteten, obwohl nur die groben Hauptkategorien des T-Stadiums verwendet wurden. Es fand eine histopathologische Beurteilung mit Unterscheidung der Typen 1 und 2 nach Delahunt [104] statt. In der multivariablen Analyse war diese aber, wie auch der zweistufige (low/high) Tumorgrad, kein unabhängiger Risikofaktor.

4.6. **Modelle vor systemischer Therapie**

4.6.1. **Motzer- oder MSKCC-Score**
Dieses älteste und gleichzeitig am meisten verbreitete Prognosemodell beim Nierenzellkarzinom wurde initial 1999 publiziert [75]. An 670 Patienten, die z. T. in den 70er Jahren und mit verschiedensten Schemata behandelt worden waren, entwickelte die Arbeitsgruppe einen Risikoscore aus 5 unabhängigen Prognosefaktoren. Hieraus konnte dann in Abhängigkeit von der Anzahl an vorhandenen negativen Faktoren eine Zuordnung zu einer Risikogruppe durchgeführt werden: gute (0 Faktoren), intermediäre (1-2 Faktoren), oder schlechte Prognose (> 2).

Der Score wurde 2002 an einem 476 Patienten großen Kollektiv (nur Interferon-Therapie) überarbeitet und die negative Variable „nicht erfolgte Tumornephrektomie“ gegen „Zeitraum seit Erstdiagnose < 12 Monate“ ersetzt [105]. In dieser Form findet es heute noch in vielen Studien Verwendung.

Endpunkt: Gesamtüberleben unter Interferon-Therapie

Metastasierte Nierenzellkarzinome, unter Anti-VEGF-Therapie

Risikofaktoren im Modell:
- Karnofsky Performance Status (< 80 %)
- LDH (> 1,5 über dem Normwert)
4.6 Modelle vor systemischer Therapie

- Hämoglobin unter dem Normwert
- Erhöhtes korrigiertes Serumkalzium (> 10 mg/dl)
- Zeitraum von der Erstdiagnose bis Beginn der systemischen Therapie < 1 Jahr

Konkordanz für den Entwicklungsdatensatz („bootstrapping“-Analyse): keine Angaben

Diese gebräuchlichste Form wurde 2004 erneut von den Autoren überarbeitet und auf 3 Faktoren (Hb und Kalziumwert, Karnofsky) gekürzt, die Kohorte bestand hier allerdings aus Patienten die in 2nd-line-Studien eingeschlossen worden waren [106].

Externe Validierung

Aufgrund seines Einsatzes als Einteilung bzw. Einschlusskriterium für diverse Phase-II/III-Studien ist der MSKCC-Score sicher das verbreitetste Prognosemodell beim Nierenzellkarzinom. Neben diesen „klinischen Einsätzen“ wurde es zudem wiederholt extern validiert:

Mekhail et al. führten an 353 Patienten eine Validierungsstudie durch und bestätigten die signifikanten Unterschiede der 3 MSKCC-Prognosegruppen bei sehr ähnlichen medianen Überlebenszeiten je Gruppe im Vergleich zur Originalpublikation (keine Konkordanz-Statistiken etc.) [107].

Patil et al. untersuchten unabhängige Risikofaktoren für das Gesamtüberleben unter Sunitinib-1st-line-Therapie und zeigten, dass alle 5 Faktoren des MSKCC-Modells auch unter der TKI-Therapie weiterhin unabhängige Prädiktoren sind [108].

Im Rahmen der Entwicklung ihres eigenen Nomogramms validierten Karakiewicz et al. auch erneut den MSKCC-Score. Die Aussagegenauigkeit lag hier jedoch nur bei 52-65 % [76].

4.6.2. mRCC-IDC- oder Heng-Kriterien

Dieses Modell stellt den ersten spezifisch für die targeted Therapien entwickelten Prognosescore dar [109]. Ähnlich dem Motzer-Score werden die Patienten nach Anzahl der vorhandenen Risikofaktoren in eine gute (0 Faktoren), intermediäre (1-2) oder schlechte Prognosegruppe (≥ 3) eingeteilt. Die 645 Patienten wurden entweder mit Sunitinib, Bevacizumab oder Sorafenib behandelt, ggf. auch nach vorhergehender Immuntherapie. Patienten mit primärer Anti-mTor-Therapie wurden ausgeschlossen.

Endpunkt: 2-Jahres-Überleben

Metastasierte Nierenzellkarzinome, vor Anti-VEGF-Therapie

Risikofaktoren im Modell:
- Hämoglobin niedriger als Normwert
- Korrigiertes Serumkalzium höher als Normwert
- Karnofsky Performance Status < 80 %
- Neutrophilen-Anzahl höher als Normwert
- Thrombozyten höher als Normwert
- Zeitraum von der Diagnose Nierenzellkarzinom bis Beginn Sunitinib (≤ 12 Monate)

Konkordanz für den Entwicklungsdatensatz („bootstrapping“-Analyse): 0,73.
4.7 Weitere Risikomodelle für Patienten mit metastasiertem Nierenzellkarzinom

Unter Externer Validierung

Bei der Entwicklung und Validierung ihres Modells überprüften Bamias et al. auch die Heng-Kriterien [110]. Hierbei lagen die Konkordanzen für das Heng-Modell aber nur bei 0,574 und 0,576 (Entwicklungs- bzw. Validierungsdatensatz).

Zudem externe Validierung durch Heng et al. [111], siehe auch Kapitel 4.7

4.6.3. International Kidney Cancer Working Group-Modell (IKCWG)

Dieser Prognosescore wurde an 3748 Patienten mit metastasiertem Nierenzellkarzinom entwickelt, wobei die Patienten des Entwicklungsdatensatzes mit Zytokinen oder BSC behandelt worden waren [112]. Die dann ebenfalls durchgeführte externe Validierung an einem externen Datensatz beinhaltete aber ausschließlich Patienten, die Anti-VEGF therapiert worden waren. Erneut wird hier in eine gute, intermediäre oder schlechte Prognosegruppe hinsichtlich des OS eingeteilt, allerdings basierend auf einem zu berechnenden Risiko-Score (25.- und 75.-Perzentile der Risikoverteilung).

Risikofaktoren im Modell:

- ECOG
- Anzahl der Metastasenlokalisationen
- Vorausgegangene Immuntherapie
- Hämoglobin
- LDH
- Leukozytenzahl
- Serumkalzium
- Alkalische Phosphatase
- Zeitraum von der Diagnose Nierenzellkarzinom bis zum Beginn der Therapie

Konkordanz für den Entwicklungsdatensatz („bootstrapping“-Analyse): 0,712. Konkordanz für Validierung an separatem Datensatz 0,741.

Aufgrund der hohen Anzahl an Parametern und der komplexen Auswertung für die Einteilung in eine der 3 Gruppen ist das Modell im klinischen Alltag sicher am schwierigsten zu verwenden.

Externe Validierung

Siehe Kapitel 4.7

4.7. Weitere Risikomodelle für Patienten mit metastasiertem Nierenzellkarzinom

 Die folgenden beiden Modelle wurden ebenfalls für die Prognoseeinteilung vor Beginn einer systemischen Therapie entwickelt. Da für sie nur eine gemeinsame Validierung durch Heng et al. publiziert ist, werden Sie im Folgenden zusammengefasst.
4.7 Weitere Risikomodelle für Patienten mit metastasiertem Nierenzellkarzinom

4.7.1. Cleveland Clinic Foundation-Modell (CCF)

Endpunkt: Progressionsfreies Überleben, n=120, metastasierte Nierenzellkarzinome, unter Anti-VEGF-Therapie (84 % SOR oder SUT)

Risikofaktoren im Modell:

- Korrigiertes Serumkalzium < 8,5 mg/dl oder > 10,0 mg/dl
- ECOG > 0
- Neutrophilen-Anzahl > 4,5/ml
- Thrombozyten höher als 300/ml
- Zeitraum Diagnose Nierenzellkarzinom bis Beginn systemische Therapie (≤ 48 Monate)

Risikogruppen:

- good (0-1),
- intermediate (2),
- poor (> 2 Risikofaktoren)

Der Faktor „Serumkalzium“ zählt im Gegensatz zu den anderen Faktoren mit 2 Punkten. Konkordanz für den Entwicklungsdatensatz („bootstrapping“-Analyse): nicht angegeben [113]

4.7.2. French model

Zu diesem Modell ist den Autoren keine explizite Vollpublikation bekannt, es handelt sich vielmehr um eine im Rahmen des AVOREN-Trials angewandte Stratifizierung, basierend auf den weiterentwickelten Kriterien von Negrier [114].

Risikofaktoren im Modell:

- ECOG > 0
- Mehr als eine Metastasenlokalisation
- Lebermetastasen
- Zeitraum Diagnose Nierenzellkarzinom bis Beginn systemische Therapie (≤ 12 Monate)

Risikogruppen:

- gut (ECOG 0 und nur eine Metastasenlokalisation)
- intermediär (alle anderen)
- schlecht (Leber- und andere Metastasen und mindestens ein weiterer Faktor) [114, 115]

Validierung

Heng et al. publizierten 2013 eine Validierungsstudie mit einem großen Datensatz von 1.028 Patienten unter Anti-VEGF-Therapie (jetzt auch Pazopanib und Axitinib) aus 13 internationalen Zentren [111]. Erneut waren Patienten mit 1st-line-Therapie mit einem mTor-Inhibitor ausgeschlossen, ebenso alle Patienten, die bei der Entwicklung ihres Modells bereits eingeschlossen worden waren.

Die Autoren führten zudem einen aufwendigen statistischen Vergleich ihres Modells mit folgenden anderen Modellen durch:
4.7 Weitere Risikomodelle für Patienten mit metastasiertem Nierenzellkarzinom

- MSKCC oder Motzer-Kriterien [105]
- International Kidney Cancer Working Group-Modell [112]
- Cleveland Clinic Foundation-Modell (CCF) [113]
- die eigenen Heng-Kriterien/Database Consortium-Modell (DCM) [109]
- French model [114, 115]

Zusammengefasst zeigte sich hierbei ein nahezu identischer C-Index für die ersten 4 genannten Modelle (in obiger Reihenfolge: 0,657; 0,668; 0,662; 0,664). Lediglich das französische Modell lag etwa 2-3% schlechter (0,640). Hinsichtlich der prognosti-zierten Anzahl an Todesfällen zum Zeitpunkt 2 Jahre nach Therapiebeginn war das Heng-Modell am genauesten.

4.7.3. Sunitinib-Modell

- Endpunkt: 5-Jahres-Nierentumor-spezifisches Überleben
- Metastasierte Nierenzellkarzinome, unter Sunitinib 1st-line-Therapie
- Risikofaktoren im Modell:
 - Anzahl der Metastasenlokisationen (> 2)
 - ECOG-PS (≥ 1)
 - Zeitraum von der Diagnose Nierenzellkarzinom bis Beginn Sunitinib (≤ 12 Monate)
 - Konkordanz für den Entwicklungsdatensatz („bootstrapping“-Analyse): 0,712
 - Konkordanz für einen separaten Validierungsdatensatz: 0,634

Die Autoren führten neben der Validierung ihres Modells parallel eine Validierung der IDC-(Heng-)Kriterien am Entwicklungs- und einem separaten Validierungsdatensatz durch. Hier lag der C-Index bei 0,574 und 0,576 und damit nahe der Aussage-genaugigkeit eines Münzwurfes.
4.7 Weitere Risikomodelle für Patienten mit metastasiertem Nierenzellkarzinom

4.7.4. **Leibovich-Score vor Immuntherapie**

4.7.5. **Molekulare Prognosemarker**

<table>
<thead>
<tr>
<th>4.20</th>
<th>Konsensbasiertes Statement</th>
</tr>
</thead>
</table>

EK

Für den Einsatz von molekularen Markern zur Prognosebewertung liegt keine ausreichende Evidenz vor.

<table>
<thead>
<tr>
<th></th>
<th>Starker Konsens</th>
</tr>
</thead>
</table>

Hintergrund

Die Identifizierung neuer prognostischer Biomarker ist aus komplexen Hochdurchsatzanalysen mit gleichzeitiger Evaluierung mehrerer molekularer Ebenen (Mutationsanalyse, Analyse der Genexpression [mRNA], der DNA-Methylierung, der miRNA-Expression, von Copy number alterations, usw.) unter Berücksichtigung des klinischen Verlaufs zu erwarten [130-133].
5.1 Aktive Überwachung (Active Surveillance)

Konsensbasiertes Statement

EK
Es gibt weder objektive Kriterien zur Selektion adäquater Patienten noch eine einheitliche Definition zur aktiven Überwachung.

Konsens

Evidenzbasierte Empfehlung

Empfehlungsgrad 0
Bei Patienten mit hoher Komorbidität und/oder begrenzter Lebenserwartung kann der kleine Nierentumor überwacht werden.

Level of Evidence 3
Leitlinienadaptation: [134]
Literatur: [135]

Konsens

Konsensbasierte Empfehlung

EK
Vor aktiver Überwachung soll eine Biopsie erfolgen.

Konsens

Hintergrund

Aktive Überwachung ist eine therapeutische Strategie für Patienten mit einem kleinen Nierentumor (< 4 cm), die eine operativ-ablative Therapie ablehnen oder für diese nicht in Frage kommen. Eine therapeutische Intervention kann sich beispielsweise bei Patientenwunsch anschließen (dann in kurativer Absicht) oder bei Größenzunahme des Tumors, um tumorbedingte Symptome oder/und Komplikationen zu vermeiden.

Trennung der Begriffe „aktive Überwachung“ und „watchful waiting“

Analog zum Prostatakarzinom werden beim Nierenzellkarzinom die Begriffe „aktive Überwachung“ und „watchful waiting“ verwendet, ohne dass für das Nierenzellkarzinom eine vergleichbare Definitions Lage existiert.

5.1 Aktive Überwachung (Active Surveillance)

Der im Durchmesser ≤ 4 cm messende Nierentumor wird als kleiner Nierentumor und in der angloamerikanischen Fachliteratur als „small renal mass“ (SRM) bezeichnet. Dieser Grenzwert entspricht auch dem Übergang von einem T1a- zu einem T1b-Stadium nach der TNM-Klassifikation. Gleichwohl haben einige der nachfolgend genannten Publikationen auch andere Grenzwerte (wie z. B. 3 cm) eingeführt.

Aufgrund der Zunahme der abdominalen Schnittbilddiagnostik werden häufiger kleine Nierentumoren als Zufallsbefunde diagnostiziert. Trotz radiologischer Malignit ätskriterien sind 20-30 % davon benigne Tumore, ca. 60 % indolente (langsам wachsende) und 20 % aggressive Karzinome mit höherem Metastasierungspotential [140]. In einer Reviewarbeit aus 18 Studien mit 880 Patienten, die sich einer aktiven Überwachung unterzogen, kam es bei 18 Patienten (2 %) zu einer metachronen Metastasierung. Hierbei war die Wachstumsrate der metastasierten Nierentumoren deutlich höher als bei den nicht metastasierten Nierentumoren 0,8 ± 0,7 vs. 0,3 ± 0,4 cm/Jahr, p < 0,001 [135]. Insgesamt hatten 23 % der SRM keine Wachstumstendenz und blieben ohne Metastasierung.

In einer anderen Arbeit untersuchten Thompson und Mitarbeiter die Wahrscheinlichkeit einer Metastasierung in Relation zum Tumordurchmesser [141]. Insgesamt konnte bei 162/2.691 Patienten (6,2 %) mit einem Nierenzellkarzinom eine Metastasierung bei Primärdiagnose nachgewiesen werden. Allerdings zeigte nur 1/781 Patienten (0,13 %) mit einem Tumor < 3 cm eine Metastasierung. Für jeden zusätzlichen Zentimeter Tumordurchmesser stieg das Risiko für eine Metastasierung zum Zeitpunkt der Diagnose um 25 % (Odds ratio 1,25; p < 0,001). Bei einer medianen Nachbeobachtung von 2,8 Jahren entwickelten 171/2.367 Patienten (7,2 %) eine Metastase. Wiederum zeigte lediglich 1/720 Patienten (0,14 %) mit einem Tumor < 3 cm einen derartigen Verlauf. Für jeden zusätzlichen Zentimeter Tumordurchmesser stieg das Risiko für eine spätere Metastasierung um 24 % (Hazard Ratio 1,24; p < 0,001) [141].

Tumorgröße und Wachstumsrate sind daher Beurteilungsparameter für das aggressive Potential von kleinen Nierentumoren, sofern der histologische Nachweis eines Karzinoms erbracht worden ist. Da aber gutartige Nierentumore (z. B. Onkozytome) auch relevante Größenveränderungen zeigen können, scheint die Wachstumsrate allein nicht ausreichend verlässlich zu sein [142].

Diese biologische Heterogenität sollte bei der Auswahl der zur Verfügung stehenden therapeutischen Optionen berücksichtigt werden. Ein im Verlauf schnell wachsender Tumor würde beispielsweise eher einer chirurgischen Therapie zugeführt als den alternativen therapeutischen Optionen.

Konzept der aktiven Überwachung in Studien

Die aktive Überwachung stellt eine Option zur Therapie des lokal begrenzten Nierenzellkarzinoms dar und sollte mit allen Patienten thematisiert werden. Für Patienten mit begrenzter Lebenserwartung und/oder relevanter Komorbidität, für die eine therapeutische Intervention zu risikoreich wäre, ist die aktive Überwachung nach aktueller Datenlage ein vertretbares Konzept [134]. Dies wird im folgenden Abschnitt erläutert. Patienten, die Kandidaten für eine aktive Überwachung oder eine kurative Therapie waren, sollten allerdings über das geringe Risiko einer Tumornachwachung, das Fehlen einer kurativen Salvagetherapie bei Auftreten von Metastasen, den Verlust der Option einer organerhaltenden Tumorthherapie und die Limitationen der aktuellen Datenlage im Hinblick auf eine aktive Überwachung informiert werden. Größere Tumoren (> 3 bis 4 cm) werden häufiger als festgestellt, da sie in der Regel ein Symptom einer Erkrankung aufweisen, die eine chirurgische oder konservative Therapie erfordert.
5.1 Aktive Überwachung (Active Surveillance)

Im Folgenden werden Arbeiten, die sich mit dem natürlichen Verlauf kleiner Tumoren beschäftigten und aus denen sich das Verständnis für eine aktive Überwachung entwickelt hat, kurz zusammengefasst (Kriterium: Arbeiten, die sich mit Active Surveillance beschäftigt haben-eine subjektive Komponente mag dabei sein).

In einer Metaanalyse von Chawla und Mitarbeitern wurden alle Arbeiten seit 1966, die unbehandelte Nierentumoren beinhalten, untersucht. Zusätzlich wurden 49 eigene Patienten mit 61 renalen Raumforderungen und einer minimalen Nachbeobachtungszeit von einem Jahr betrachtet [136]. Analysierte Kriterien waren Wachstumsrate, Nachbeobachtungszeit, histologische Ergebnisse und Metastasierung. Es wurden 10 Serien aus 9 Institutionen gefunden. Die mittlere Patientenzahl lag bei 25 (Spannweite 6-40 Patienten) mit einem mittleren Nachbeobachtungszeitraum von 30 Monaten (Spannweite 25 bis 39 Monate). Insgesamt wurden 286 renale Raumforderungen identifiziert, von denen 131 (46 %) biopsiert wurden. Bei 120/131 Biopsien (92 %) ergab sich der Nachweis eines Nierenzellkarzinoms, die übrigen Biopsien zeigten benignes Gewebe. Von den 286 renalen Raumforderungen wurden 234 in die Metaanalyse eingeschlossen. Die übrigen renalen Raumforderungen konnten aufgrund fehlender Daten für die Wachstumsrate in der Originalpublikation nicht berücksichtigt werden. Die mediane Tumorgröße lag bei 2,48 cm (Spannweite 1,73 bis 4,08 cm). Die mediane Wachstumsrate betrug 0,28 cm/Jahr (Spannweite 0,09 bis 0,86 cm pro Jahr). Das mediane Wachstum der Nierenzellkarzinome wurde mit 0,35 cm pro Jahr (Spannweite 0,42 bis 1,6 cm pro Jahr) berechnet. Die initiale Tumorgröße konnte die Wachstumsrate nicht vorhersagen. Eine Metastasierung wurde bei 3/286 Patienten (1,1 %) gefunden. Die Mehrzahl der kontrastmittelaufnehmenden renalen Raumforderungen zeigte ein geringes Wachstum. Gleichwohl erachten die Autoren serielle Röntgenuntersuchungen als nicht ausreichend für die Bewertung derartiger Befunde. Vielmehr wird das Etablieren biologischer Parameter für die Einschätzung des natürlichen Verlaufs gefordert [136].

Kunkle und Mitarbeiter führten eine MEDLINE-Recherche und anschließende Metaanalyse zum Thema „small renal mass“ durch [137]. In 99 Studien wurden 6.471 Tumoren gefunden, die entweder mittels partieller Nephrektomie, Kryoablation, Radiofrequenzablation oder aktiver Überwachung behandelt wurden. Patienten unter aktiver Überwachung (n=331 Tumoren, entsprechend 5,1% aller Tumoren) waren im Vergleich zu den anderen Therapieformen älter (68,7 Jahre gegenüber 60,1 Jahren bei Patienten mit partieller Nephrektomie bzw. 65,7 Jahren bei Patienten mit Kryoablation bzw. 67,2 Jahren bei Patienten mit Radiokompression), hatten einen größeren mittleren Tumordurchmesser gegenüber der Kryoablation oder Radiofrequenzablation (3,04 cm gegenüber 2,56 cm bei Patienten mit Kryoablation bzw. 2,69 cm bei Patienten mit Radiokompression), waren jedoch im Mittel kleiner als bei den Patienten, die sich einer partiellen Nephrektomie unterzogen (3,04 cm vs. 3,4 cm bei Patienten mit partieller Nephrektomie). Ferner hatten die Patienten unter Active Surveillance häufiger keine histologische Sicherung des Befundes (54,1 %) und eine kürzere mittlere Nachbeobachtungszeit im Vergleich zur Gruppe nach partieller Nephrektomie (33,3 Monate gegenüber 54 Monaten bei Patienten mit partieller Nephrektomie). Im Vergleich zu den Patienten nach Kryoablation oder Radiofrequenzablation war die Nachbeobachtungszeit der Active Surveillance Patienten länger (33,3 Monate vs 18,3 Monaten bei Patienten mit partieller Nephrektomie bzw. 16,4 Monaten bei Patienten mit Radiofrequenzablation). Die Lokalrezidivraten lagen bei 2,6 % nach partieller Nephrektomie bzw. 4,6 % nach Kryoablation bzw. 11,7 % nach Radiofrequenzablation. Die Metastasie-
rungsrraten lagen bei 5,6 % nach partieller Nephrektomie bzw. 1,2 % nach Kryoablation bzw. 2,3 % nach Radiofrequenzablation bzw. 0,9 % unter aktiver Überwachung [137].

Smaldone und Mitarbeiter führten eine Analyse an 880 Patienten mit 936 Nierentumoren aus 18 Serien durch [135]. Von diesen Patienten entwickelten 18 (2 %) nach durchschnittlich 40 Monaten eine Metastase. Aus 6 Studien (259 Patienten mit 284 Tumoren) konnten individuelle Daten für eine gepoolte Analyse verwendet werden. Bei einer mittleren Nachbeobachtungszeit von 33,5 ± 22,6 Monaten war die mittlere Tumorgröße bei Studienbeginn bei 2,3 ± 1,3 cm. Die mittlere Wachstumsrate lag bei 0,31 ± 0,38 cm pro Jahr. Von den 65 Tumoren (23 %) ohne Größenzunahme zeigte keiner eine Metastasierung. In einer weiteren gepoolten Analyse unterschieden sich die beiden Gruppen Tumorwachstum vs. kein Tumorwachstum in den folgenden Parametern: höheres Alter (75,1 ± 9,1 Jahre vs. 66,6 ± 12,3 Jahre; \(p=0,03 \)), initial höherer Tumorwachstum (4,1 ± 2,1 cm vs. 2,3 ± 1,3 cm; \(p<0,0001 \)), initial höheres Tumorvolumen (66,3 ± 100 cm³ vs. 15,1 ± 60,3 cm³; \(p=0,0001 \)), höhere Wachstumsrate pro Jahr (0,8 ± 0,65 cm pro Jahr vs. 0,3 ± 0,4 cm pro Jahr; \(p=0,0001 \)) und eine höhere Volumenzunahme pro Jahr (27,1 ± 24,9 cm³ pro Jahr vs. 6,2 ± 27,5 cm³ pro Jahr; \(p<0,0001 \)). Die Autoren schlussfolgerten, dass eine aktive radiologische Überwachung bei Patienten mit Komorbidität ein akzeptables Vorgehen darstellen würde. Eine verzögerte Intervention würde für Patienten mit Größen- bzw. Volumenzunahme in Betracht kommen [135].
5.2. **Fokale Therapie des Nierenzellkarzinoms**

5.2.1. **ablative Verfahren**

<table>
<thead>
<tr>
<th>5.4.</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>0</td>
</tr>
<tr>
<td>Kryoaablation und Radiofrequenzablation können Patienten mit kleinen Nierentumoren und hoher Komorbidität und/oder begrenzter Lebenserwartung angeboten werden.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>2</td>
</tr>
<tr>
<td>Literatur: [143-145]</td>
<td></td>
</tr>
</tbody>
</table>

Starker Konsens

<table>
<thead>
<tr>
<th>5.5.</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>A</td>
</tr>
<tr>
<td>Vor Einsatz ablatischer Verfahren soll eine perkutane Nierentumorbiopsie erfolgen.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>3</td>
</tr>
<tr>
<td>Literatur: [143, 146]</td>
<td></td>
</tr>
</tbody>
</table>

Konsens

Hintergrund zu Empfehlung 5.4.

Die Radiografienzablation (RFA) ist eine Methode zur lokalen Zerstörung von Gewebe. Dabei wird bildgebungsgestützt perkutan ein Applikator in das Gewebe eingebracht und eine Thermonekrose (Hitzezerstörung) durch die Wärmeentwicklung des Hochfrequenzstroms erzeugt.

5.2 Fokale Therapie des Nierenzellkarzinoms

Zu ablatischen Therapieverfahren kleiner Nierentumoren (Radiofrequenzablation, Kryoablation, stereotaktisch-ablative Radiotherapie) liegen keine prospektiv randomisierten Studiendaten vor.

Publiziert wurden jedoch verschiedene Patientenserien. Eine 2012 publizierte Meta-Analyse von Fallserien identifizierte insgesamt 31 auswertbare Datensätze [143]. In 20 Arbeiten zur Kryoablation wurde über insgesamt 457 Patienten und in 11 Serien über insgesamt 426 Fälle mit Radiofrequenzablation berichtet. Bewertungskriterium waren dabei die klinische Effektivität der Therapie sowie die Komplikationsrate. Klinische Effektivität wurde definiert als Prozentsatz der erfolgreich durch Radiofrequenz- bzw. Kryoablation behandelten Tumoren, bei denen in der CT- oder MRT-gestützten Nachsorge kein erneutes Tumorwachstum/Rezidiv beobachtet wurde. Das mittlere Alter der behandelten Patienten betrug für die Kryoablation/Radiofrequenzablation 63,8 Jahre (44,9-72 Jahre)/64,0 Jahre (39-71,7 Jahre), die mittlere Tumorgröße lag bei 3,5 cm (2,0-4,2 cm)/2,7 cm (2,0-4,3 cm) und die mittlere Nachbeobachtungszeit bei 17,9 Monaten (7-45,7 Monate)/18,1 Monaten (9,0-30,7 Monate). Die gepoolten Analyse zeigte sich für 457 Patienten mit Kryoablation eine klinische Effektivität von 89 % (95 % CI 0,83-0,94) gegenüber 90 % (95 % CI 0,86-0,93) für 426 Patienten mit Radiofrequenzablation. Dabei differierten die Daten für die klinische Effektivität in den 20 Studien zur Kryoablation signifikant, diejenigen der Radiofrequenzablation in den ausgewerteten 11 Studien hingegen nicht. Folgende Komplikationen wurden berichtet:

Kryoablation: perirenales Hämatom, Nervenläsionen, Unterkühlung, Ateminsuffizienz, Urinombildung, Hämaturie, Blutung, postoperativer Ileus, sekundäre Ureterabgangstenose, Pneumonie, Tod.

Radiofrequenzablation: Hämaturie, Flankenschmerzen, perirenales Hämatom, Ileus, Harnretention, Urinombildung, Pneumonie, Blutung, neuropathische Schmerzen, Hydronephrose, Urinfisteln, Tod.

Hinsichtlich der gepoolten Analyse detektiert Komplikationen ergaben sich keinerlei signifikante Unterschiede (19,9 %/19,0 %).

In einem systematischen Literatur-Review zu stereotaktisch ablatischer Radiotherapieverfahren wurden 2012 7 retrospektive und 3 prospektive Datensätze mit insgesamt 126 Patienten ausgewertet [145]. Am häufigsten wurden 40 Gy in 5 Fraktionen verwendet. Die geschätzte mittlere gewichtete 2-Jahres-Lokalkontrolle lag bei 94 % (84-100 %). Die Nachbeobachtungszeit lag bei gewichtet 26 Monaten (9-58 Monate). Höhergradige Nebenwirkungen (G3+) traten bei 3,8 % (0-19 %) auf. Insgesamt sind die Er-

In einer populationsbasierten retrospektiven Kohortenstudie haben Whitson et al. die onkologische Effektivität der organerhaltenden Nierenchirurgie gegenüber ablative Verfahren bei Patienten mit Nierenkarzinomen < 4 cm anhand der SEER-Datenbasis (Surveillance, Epidemiology and End Results) untersucht [148]. Zwischen 1998 und 2007 wurden 8.818 Patienten mit inzidentellen Nierenkarzinomen mit einer organerhaltenden Nierenteilresektion (Nephron-Sparing Surgery [NSS], n=7.704) oder einem ablative Verfahren (Kryoablation, Radiofrequenzablation oder nicht anders spezifiziert [einschließlich stereotaktisch-ablativer Radiotherapieverfahren], n=1114) behandelt. Die mediane Nachbeobachtung betrug 2,8 Jahre (IQR 1,2-4,7 Jahre) für die NSS-Gruppe und 1,6 Jahre für die ablative Gruppe (IQR 0,7-2,9 Jahre). Nach multivariater Adjustierung ergab sich für die ablative Techniken im Vergleich zur organerhaltenden Nierenchirurgie ein etwa zweifach erhöhtes Risiko an einem Nierenkarzinom zu versterben (Hazard Ratio 1,9 [95 % CI 1,1-3,3], p=0,02). Allerdings betrug die vorausgesagte Wahrscheinlichkeit für das DSS (Disease Specific Survival) nach 5 Jahren 98,3 % für die NSS und 96,6 % für die ablative Techniken. Alter, Geschlecht, Familienstatus und Tumorgröße waren Faktoren, die die klinischen Ergebnisse bei den Patienten signifikant beeinflussten. Die absoluten Unterschiede im DSS zwischen beiden Behandlungsoptionen waren nach kurzer bzw. mittlerer Nachbeobachtung in dieser retrospektiven Untersuchung nur marginal.

Hintergrund zu Empfehlung 5.5.

In einem Review haben sich van Poppel und Joniau bereits 2007 mit dem klinischen Management der sogenannten SRM (small renal masses) auseinandergesetzt [146]. Anhand der verfügbaren Literatur ist zu erwarten, dass der Anteil benigner Veränderungen bei Tumoren mit bis zu 30 mm Größe bei über 20 % liegt. Gleichzeitig wiesen die Autoren darauf hin, dass auch kleine Nierentumoren durchaus aggressive Malignome darstellen können. Im Falle der Detektion eines klarzelligen Nierenzellkarzinoms können anhand molekularpathologischer Marker auch Aussagen zum malignen Potenzial getroffen werden. So zeigen unabhängig durchgeführte Analysen verschiedener Arbeitsgruppen eine prognostische Relevanz eines 9p-Verlustes beim klarzelligen Nierenzellkarzinom.

Obwohl es sich bei der RFA bzw. Kryoablation um minimalinvasive Verfahren handelt, wird die Komplikationsrate in der Literatur mit ca. bis 19 % (s. o.) angegeben. Daher ist auch für diese Verfahren die Indikation streng auf maligne Tumoren zu beschränken. Dies unterstreicht die Bedeutung der prätherapeutischen histologischen Sicherung durch eine perkutane Biopsie.
6. Organerhaltende Operation, OP-Techniken (offen-operativ, laparoskopisch, robotergestützt), Lymphadenektomie, Adenektomie

6.1. Offene oder laparoskopische/robotergestützte Operation bei Teil-/Totalnephrektomie

<table>
<thead>
<tr>
<th>6.1.</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>Zur Kuration soll beim lokalisierten Nierenzellkarzinom eine chirurgische Resektion erfolgen.</td>
</tr>
<tr>
<td>A</td>
<td>Literatur: [149]</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>Starker Konsens</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

6.2. Evidenzbasiertes Statement

Level of Evidence	Zwischen der offenen und der laparoskopischen Nephrektomie wurde kein Unterschied im Gesamt- und tumorspezifischen Überleben gezeigt. Die Datenlage für die retroperitoneoskopische und die roboterassistierte Nephrektomie ist diesbezüglich nicht ausreichend.
3	Literatur: [150, 151]
Konsens	

6.3. Evidenzbasiertes Statement

Level of Evidence	Bei laparoskopischer Nephrektomie sind der intraoperative Blutverlust geringer und der stationäre Aufenthalt kürzer als bei offener Operation.
3	Literatur: [150, 152, 153]
Konsens	
6.4. Evidenzbasiertes Statement

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Die offene Nierenteilresektion stellt den Standard bei der organerhaltenden Operation dar.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Literatur: [154-162]</td>
</tr>
<tr>
<td></td>
<td>Konsens</td>
</tr>
</tbody>
</table>

6.5. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Bei ausreichender Erfahrung kann dieser Eingriff auch minimalinvasiv erfolgen.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level of Evidence</td>
</tr>
<tr>
<td>0</td>
<td>Literatur: [154-162]</td>
</tr>
<tr>
<td></td>
<td>Konsens</td>
</tr>
</tbody>
</table>

Hintergrund

Bei Indikation einer totalen Nephrektomie

Das OS (overall survival) wurde in der RCT von Peng et al. nicht berücksichtigt. Das OS nach 5 Jahren lag bei Hemal et al. nach laparoskopischer Nephrektomie bei 87,8% (n=41), nach offener Nephrektomie bei 88,7% (n=71). Das tumorspezifische Überleben wurde mit 95,12% (Laparoskopie) bzw. mit 94,36% (offene Operation) beschrieben.
6.1 Offene oder laparoskopische/robotergestützte Operation bei Teil-/Totalnephrektomie

Auch Tait et al. konnten in den 5-Jahres-Überlebensraten keine signifikanten Unterschiede feststellen (Odds Ratio Laparoskopie 0,76 [95 % CI 0,36-1,56] und offene Operation 0,73 [95 % CI 0,32-1,69]).

Der stationäre Aufenthalt wurde in 3 von 4 Arbeiten untersucht und war in 3/3 Arbeiten kürzer nach laparoskopischer Nephrektomie. Mit einem Unterschied von fast 5 Tagen war dieser Unterschied im RCT von Peng et al. am größten (MD -4,5 Tage [95 % CI -5,20-3,80]).

Der Blutverlust war in den Arbeiten von Hemal et al. (MD -292 ml [95 % CI -342-242], Gratzke et al. (MD -193 ml [95 % CI -320--67]) und Peng et al. (MD -82 ml [95 % CI -93--72]) geringer nach dem laparoskopischen Eingriff. Die Bluttransfusionsrate wurde jedoch uneinheitlich dargestellt (Hemal et al. 15 % [Lap] vs. 32 % [offen]; Gratzke et al. 6 % [Lap] vs. 0 % [offen]).

Die postoperativen Komplikationsraten waren in den drei Studien (Peng et al. 2006, Gratzke et al. 2009, Hemal et al. 2007), die dies untersuchten, gering und wiesen ein breites Konfidenzintervall auf [150, 152, 153]. Die Infektionsrate war nach laparoskopischem Vorgehen geringer (Peng et al. risk ratio 0,32 [95 % CI 0,01-7,55], Hemal et al. 0,35 [95 % CI 0,04-2,86], Gratzke et al. 0,34 [95 % CI 0,01-8,14]) wie auch die Rate an Pneumonien (Gratzke et al. risk ratio 0,32 [95 % CI 0,01-7,55], Hemal et al. 0,34 [95 % CI 0,01-8,14]).

Bei der Beurteilung des laparoskopischen Zugangsweges (retroperitoneal vs. transperitoneal) wurden zwei RCTs (Desai et al. 2005, Nambirajan et al. 2004) ein quasi-RCT (Nadler et al. 2006) und eine Meta-Analyse (Fan et al. 2013) berücksichtigt [165-168]. Während die Lebensqualität bei beiden Zugängen vergleichbar war, zeigte sich bei den posterior gelegenen Tumoren in der Meta-Analyse, dass der retroperitoneale Zugang eine kürzere Operationszeit (WMD 48,85 min. [95 % CI 29,33-68,37], p < 0,001) und einen kürzeren stationären Aufenthalt (WMD 1,01 Tage [95 % CI 0,39-1,63], p=0,001) zur Folge hatte [168].

Die roboterassistierten Operationsverfahren werden seit 2006 vermehrt in der Urologie durchgeführt. Es gibt allerdings nur eine prospektive Kohortenstudie von Hemal und Kumar 2009 mit einer vergleichenden Darstellung roboterassistierte Nephrektomie vs. laparoskopische Nephrektomie [169]. Jeweils 15 Patienten wurden pro Arm eingeschlossen. Im perioperativen Outcome (Blutverlust, stationärer Aufenthalt, lokale Tumorkontrolle (allerdings kurzes Follow-up von 1 Jahr) wurden keine Unterschiede festgestellt.

Bei Indikation einer Teilnephrektomie

Beider vergleichenden Darstellung der offenen und der laparoskopischen Nierenteilresektion werden 5 Arbeiten berücksichtigt [154-158]. Wenn Nierengewebe erhalten werden kann, sollte dies im Sinne einer organerhaltenden Operation erfolgen [164]. Dies wird in Kapitel 6.6 weiter dargestellt. Bei dem Vergleich der organerhaltenden Operationstechniken, offen vs. laparoskopisch, wurden die Überlebensraten in den 5 berücksichtigten Arbeiten sehr unterschiedlich dokumentiert und sollten somit kritisch beurteilt werden [154-158]. Bei Lane und Gill wurde das OS nach 7 Jahren mit 83,1 % (lap.) und 83,5 % (offen) und bei Marszalek et al. nach 5 Jahren (nur pT1-Tumore) mit 96 % (lap.) vs. 85 % (offen, p=0,1) festgehalten [155, 157].

Während der mittlere Blutverlust bei Gill et al. nach laparoskopischer Operation geringer war (MD -76 ml), zeigte dieselbe Arbeit eine höhere Transfusionsrate nach laparos-
kopischer Nierenteilresektion (5,8 % [45/771] vs. 3,4 % [35/1029]) [154]. Dies konnte in den Arbeiten von Gong et al. und Marszalek et al. nicht bestätigt werden [156, 157].

Die postoperativen Komplikationsraten wurden nach unterschiedlichen Beurteilungskriterien vorgestellt und sind nicht direkt vergleichbar. Gill et al. beschreiben eine höhere Komplikationsrate nach laparoskopischer Operation (24,9 % vs. 19,2 %) [154]. Vergleichbare Angaben werden von Gong et al. gemacht (39 % vs. 22 %, p=0,026) [156]. Erfolgt die Einteilung der Komplikationen nach den National Cancer Institute Common Toxicity Criteria, konnten Gill et al. keinen Unterschied feststellen (14/100 vs. 19/100, p=0,8). Diese Angaben werden von Marszalek et al. nach der Simmonsand-Einteilung bestätigt [157].

Die postoperative Nierenfunktion wird in drei Studien beschrieben. In der Arbeit von Marszalek et al. war der Abfall der GFR 24 Stunden nach laparoskopischer Operation höher im Vergleich zur offenen Operation (8,8 % vs. 0,8 %, p < 0,001) [157]. Allerdings konnte nach durchschnittlich 3,6 Jahren ein vergleichbarer Rückgang der GFR im Vergleich zum Ausgangsbefund in beiden Gruppen festgestellt werden (10,9 % vs. 10,6 %, p=0,8). Diese Angaben werden von Gill et al. (97,9 % lap. vs. 99,6 % offen) und Gong et al. bestätigt [154, 156].

Aboumarzouk et al. konnten keine signifikanten perioperativen Unterschiede bei der Operationszeit (MD 0,52 [95 % CI, -1,56-2,60], p=0,62), dem Blutverlust (MD 24,04 [95 % CI 56,86-8,77], p=0,15), der Konversionsrate (OR 1,12 [95 % CI 0,38-3,32], p=0,84) und dem stationären Aufenthalt feststellen (MD 0,11 [95 % CI -0,13-0,35], p=0,37). Nur bei der warmen Ischämiezeit wurden günstigere Ergebnisse nach roboterassistierter Operation im Vergleich zur laparoskopischen Operation nachgewiesen (MD -2,74 [95 % CI, -4,35--1,14], p=0,0008) [159]. Froghi et al. berücksichtigten nur Arbeiten mit einer Tumogröße < 4 cm [160]. Während die perioperativen Ergebnisse von Aboumarzouk et al. bestätigt wurden, konnte in dieser Meta-Analyse für die warme Ischämiezeit lediglich ein Trend zugunsten der robotischen Operation, jedoch kein signifikanter Unterschied festgestellt werden (95 % CI -15,22-3,70, p=0,23). In der Analyse von Bi et al. wurden lediglich die Literaturdaten von robotischen Nierenteilesektionen mit einer Tumogröße > 4 cm zusammengestellt [161]. Mit einer geringen Ischämierate (MD 28 min. [95 % CI 21-34]) und einer akzeptablen Konversionsrate (MD 7,0 [95 % CI 2,6-17,7]) stellt die robotische Nierenteilresektion auch bei größeren Tumoren eine mögliche Therapieoption dar.

In den EAU-Leitlinien 2013 zur robotischen und laparoskopischen Operation wird aufgrund der schlechten Datenqualität die robotische Operation der laparoskopischen gleichgesetzt und bei ausreichender Erfahrung zur Organerhaltung empfohlen [162].
6.2 Einsatz von Warm- oder Kaltischämie

<table>
<thead>
<tr>
<th>6.6.</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>B</td>
</tr>
<tr>
<td>Bei der Nierenteilresektion sollte die Ischämiedauer so kurz wie möglich gehalten werden.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>3</td>
</tr>
<tr>
<td>Literatur: [170-183]</td>
<td></td>
</tr>
</tbody>
</table>

Hintergrund

Generell werden bei der Nierenteilresektion drei Vorgehensweisen unterschieden:

- Warme Ischämie
- Kalte Ischämie
- Keine Ischämie

Mit der sich ausweitenden Indikationsstellung zur Teilnephrektomie zum Erhalt der Nierenfunktion (siehe Kapitel 6.1.) stellt sich die Frage, ob durch Anwendung von temporärer Ischämie im Rahmen dieses Vorgehens eine Schädigung der Niere verursacht wird und wenn ja, wie diese Schädigung möglichst minimiert werden kann.

Die in der hier durchgeführten Primärrecherche identifizierten Publikationen sind fast ausnahmslos retrospektiver Natur. Ferner wird in den meisten Arbeiten die errechnete glomeruläre Filtrationsrate (eGFR) oder auch nur der alleinige Serum-Kreatininwert als Messgröße zur Beschreibung des Nierenfunktionsverlustes angewendet. Beeinflusst durch diverse Kofaktoren sind jedoch beide Parameter zur Detektion insbesondere niedriggradiger Schädigungen bekanntermaßen unpräzise. Dies gilt wegen der Kom-
6.2 Einsatz von Warm- oder Kaltischämie

Eine Vielzahl der im Rahmen der Recherche identifizierten Publikationen behandeln als Fragestellung den Vergleich verschiedener Operationsmethoden und Zugangswegen, wie z. B. Vergleiche offener mit roboterassistierten (RAPN) oder laparoskopischen (LPN) Teilnephrektomien (z. B. [176-178]). Die Betrachtung der Nierenfunktion in Zusammenhang mit der Ischämiezeit (WIT) stellt in diesen Arbeiten i. d. R. nicht das primäre Untersuchungsziel da. Infolgedessen ist auch die Erfassung der Variablen zum Teil unpräzise (z. B. kein definierter Zeitpunkt für die postoperative Messung der Nierenfunktion), was für die Auswertungen ein hohes Risiko für „confounding biases“ bedingt.

Auf der anderen Seite ist durch geringe Stichprobengrößen im niedrig zweistelligen Bereich die Validität der Aussagen einiger Studien zu hinterfragen. Studien wie beispielsweise die von Bhayani et al. oder Kane et al. beschreiben, dass auch bei WIT von mehr als 30 min. (max. 55 min.) keine signifikant höhere Verminderung der eGFR im Vergleich zur fehlenden Ischämie zu erwarten ist [179, 180]. Kritisch hier ist die Tatsache, dass die Gruppen mit langer Ischämiezeit nur 28 bzw. 15 Patienten umfassten und ggf. das Signifikanzniveau allein hierdurch nicht erreicht wurde. Diese methodische Schwäche gilt allerdings auch für einige Arbeiten, die einen Zusammenhang zwischen WIT und Nierenfunktionsverlust nachweisen konnten (z. B. [181, 182]).

Warne Ischämie

nach Nierenteilresektion, die bei einer warmen Ischämie über 40 Minuten ausgeprägter ist [186].

Kalte Ischämie

Bei großen, komplexen Tumoren oder mehreren Tumoren mit einer zu erwartenden Ischämie über 25 Minuten wird zum besseren Erhalt der GFR eine kalte Ischämie empfohlen [187]. Diese kann durch Oberflächenkühlung (mindestens 10 Minuten, zu erwartender Temperaturabfall auf 15-20 °C), eine Perfusion in situ (Ringer-Laktat-Lösung 4 °C für ca. 10 Minuten) oder ex situ erfolgen, wobei die ex-situ-Perfusion nur bei ausgewählten Tumoren erforderlich ist [188-190].

Keine Ischämie

Generell muss darauf hingewiesen werden, dass ein wiederholtes Abklemmen der Niere unbedingt zu vermeiden ist, da der Reperfusionsschaden durch das Einströmen von oxygeniertem Blut zur Bildung von freien Radikalen führt und es dadurch wiederum zur Nekrosebildung kommen kann [192].

Keine Ischämie vs. Ischämie

Borofsky et al. zeigten in einer matched-pair-Analyse von je 27 roboterassistierten PN-(RAPN) Patienten mit oder ohne Ischämie, dass bis 30 Tage nach der Operation die Patienten mit WIT eine signifikant schlechtere eGFR aufwiesen (-14,9 % vs. -1,8 %) [193]. George et al. konnten Ähnliches für einen längeren Nachbeobachtungszeitraum (6 Monate) ermitteln. Die untersuchten 150 LPN-Patienten ohne Ischämie hatten einen signifikant geringeren eGFR-Verlust als die 189 Patienten mit WIT im Rahmen der LPN (-6 % vs. -11 %). Dies galt insbesondere für Patienten mit einer WIT > 30 Minuten [194].

Zu ähnlichen Ergebnissen kamen auch die Studien von Kopp et al. und Thompson et al., die beide eine signifikant höhere Rate an Niereninsuffizienzen unterschiedlicher Graduierung in den Gruppen mit WIT (n=164 bzw. 362) im Vergleich zu Patienten ohne Ischämie (n=64 bzw. 96) nachwiesen [172, 195].

Rais-Bahrami et al. ermittelten, dass das Serum-Kreatinin in der Gruppe der in Ischämie operierten Patienten (n=264) 6 Monate postoperativ signifikant höher war als in der Kontrollgruppe, die ohne Ausklemmen operiert worden war (n=126) [196].

Keinen signifikanten Unterschied hinsichtlich des Kreatininwertes in Zusammenhang mit der Anwendung oder dem Verzicht auf Ischämie beobachteten Kane et al. bei 15 bzw. 12 Patienten [180].
Bei Krane et al. waren bessere eGFR-Werte bei den Patienten beobachtet worden, die eine RAPN ohne Ischämie erhalten hatten. Bei auch hier kleiner Gruppengröße waren die Unterschiede jedoch nicht signifikant [181].

Bei ebenfalls kleinen Kohorten (n=35 vs. 9) beschreiben Vricella et al. in einer prospektiven Studie, dass die Anwendung oder der Verzicht auf warme Ischämie (Median 26 min.) im Rahmen einer LPN zum Zeitpunkt der Entlassung und nach 3 Monaten keinen signifikanten Unterschied in den Kreatininwerten ergeben hatte [197].

Insgesamt sind wir der Auffassung, dass in der Gesamtschau der recherchierten Literatur die Daten ausreichend belegen, dass die Anwendung von Ischämie im Rahmen einer Teilnephrektomie zu einem Nierenfunktionsverlust führen kann und folglich, sofern möglich, möglichst kurz gehalten werden sollte. Die Angabe eines exakten Zeitlimits ist aufgrund der vorhandenen Literatur nicht möglich.

Kalte vs. warme Ischämie

In einer Multicenterstudie wurden insgesamt 660 Patienten mit Einzelnierensituation verglichen, von denen 300 einer offenen PN in kalter, der Rest in warmer Ischämie unterzogen worden waren. Trotz signifikant längerer medianer Ischämiezeit (45 vs. 22 min.) in der Gruppe mit kalter Ischämie war kein signifikanter Unterschied in der eGFR-Minderung zu beobachten [199]. In einer multivariaten Analyse der Risikofaktoren für die Kurz- und Langzeitergebnisse hinsichtlich der Nierenfunktion konnte bei Ischämiezeiten > 30 min. für die Kombination mit kalter Ischämie ein protektiver Effekt ermittelt werden. Zu ähnlichen Ergebnissen kommt die retrospektive Analyse von Marszalek et al., die 100 LPN in warmer Ischämie mit 100 offenen PN in vorwiegend kalter Ischämie per matched-pair-Analyse verglichen [157]. Trotz der längeren medianen Ischämiedauer in der offenen Gruppe (31 vs. 23 min.) war die postoperative eGFR in dieser Gruppe signifikant besser. Nach im Mittel 3,6 Jahren war zwischen den Gruppen kein Unterschied mehr festzustellen.

In einer retrospektiven, multivariaten Analyse ermittelten Shikanov et al. die Kühlung der Niere während der Ischämie als protektiven Faktor für den postoperativen Funktionserhalt [200]. Auch hier verliert sich im weiteren Follow-up (13 Monate) dieser Effekt aber und nur noch Tumorgröße und Diabetes mellitus als Komorbidität blieben unabkömmliche Risikofaktoren. Es ist zu vermuten, dass dies durch kompensatorische Effekte der kontralateralen Niere, wie u. a. von Wang et al. untersucht, verursacht wurde (s.o.) [175].

Thompson et al. verglichen in einer dreiarmigen Studie ausschließlich Patienten mit Einzelniere, die entweder ohne (n=85), in kalter (n=174) oder in warmer Ischämie (n=278) operiert worden waren. Die retrospektiven Analysen zeigten, dass eine WIT > 20 min. oder eine kalte Ischämie > 35 min. mit einem signifikant höheren Risiko für
ein akutes Nierenversagen assoziiert sind [201]. Während in der Gruppe mit warmer Ischämie auch im weiteren Verlauf adverse Endpunkte zwischen den Gruppen WIT > 20 min. vs. < 20 min. signifikant divergierter (z. B. chronische Niereninsuffizienz 41 % vs. 20 %), war dies bei der kalten Ischämie für den untersuchten cut-off von 35 min. so nicht zu beschreiben.

Shen et al. zeigten in ihrer Arbeit, dass auch bei der kalten Ischämie zeitliche Limits bestehen und die Ausklemmdauer mit dem ipsilateralen Nierenfunktionsverlust nach 3 Monaten in der seitenge trennten Funktionsszintigraphie korreliert [202].

Somit konnten alle aus der Literaturrecherche hervorgegangenen Studien, die die kalte mit der warmen Ischämie verglichen hatten, einheitlich einen protektiven Effekt der kalten Ischämie bei längerer Ischämiedauer nachweisen. Wann jedoch die längere Ischämie beginnt, kann aufgrund der vorhandenen Literatur nicht beantwortet werden.

Dauer der Ischämie

Lane et al. konnten in einer Untersuchung an insgesamt 199 Patienten mit Einzelniere zeigen, dass die WIT neben dem Alter und der präoperativen Nierenfunktion ein unab hängiger Prädiktor für die eGFR-Minderung darstellt [183]. Zu einem ähnlichen Ergebnis kommen Long et al. (n=381), bei denen statt des Alters die vorhandenen Komorbiditäten als weiterer Risikofaktor ermittelt wurden [203]. In der multivariaten Analyse von Lifshitz et al. waren eine WIT > 30 min. sowie der BMI, Geschlecht und Alter und das zusätzliche Abklemmen der Vene jeweils unabhängige Risikofaktoren für eine eGFR-Minderung am 1. postoperativen Tag ihrer 184 LPN-Patienten [204].

Hillyer et al. verglichen retrospektiv das Outcome von 18 RAPN-Patienten mit dem von 32 LPN-Patienten. Bei signifikant längerer WIT in der LPN-Gruppe (37 vs. 19 min.) war auch die eGFR einen Monat postoperativ in der LPN-Gruppe signifikant verschlechtert (-37,4 % vs. -14,6 %) [182]. In einer weiteren Studie derselben Arbeitsgruppe konnte für 26 Patienten mit Einzelniere, die einer RAPN mit einer medianen WIT von 17 min. unterzogen worden waren, kein signifikanter Abfall der postoperativen eGFR ermittelt werden (-15,8 %; p=0,13) [182]. Die Dauer der warmen Ischämie wird in der Literatur unterschiedlich bewertet und kann nicht einheitlich festgelegt werden.

Abklemmen ausschließlich der Arterie vs. Arterie und Vene

Choi et al. beschrieben in ihrer Studie keine signifikanten Unterschiede hinsichtlich der eGFR zwischen ihrer LPN- (n=52) und der RAPN-Gruppe (n=48) bis 12 Monate postoperativ, obwohl bei gleicher mittlerer WIT in ersterer in 62 % zusätzliche zur Arterie auch die Vene abgeklemmt wurde (RAPN-Gruppe: 25 %) [205]. Bei Lifshitz et al. war in multivariater Analyse das zusätzliche Abklemmen der Vene ein unabhängiger Risikofaktor für eine eGFR-Minderung am 1. postoperativen Tag (Gesamtkollektiv: n=184) [204].

Protektive Substanzen

Als renoprotektive Maßnahmen werden folgende Substanzen diskutiert:

- Mannit (20 %, 1 ml/kg KG ca. 30 Minuten vor Ischämie; Anstieg des renalen Blutflusses, Absinken des renalen vaskulären Widerstandes; Reduktion der postischämischen Tubuluszellschwellung u. a.)
- Furosemid (10-20 mg als Bolus ca. 10 Minuten vor Ischämie)
- Heparin (1000-2000 IE vor Abklemmen der Gefäße)
- Enalaprilat (1,35 mg/60-100 kg KG ca. 30 Minuten vor Ischämie; verbesserte Reperfusion u. a.) [189, 206, 207].
6.3 Adjuvante Lymphadenektomie

Diese Ergebnisse basieren vor allem auf experimentellen Untersuchungen und retrospektiven Datenerhebungen. Hierzu liegen keine RCTs vor.

6.3. **Adjuvante Lymphadenektomie**

6.7. **Evidenzbasierte Empfehlung**

Empfehlungsgrad

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Eine systematische oder extendierte Lymphadenektomie bei der operativen Therapie des Nierenzellkarzinoms soll bei unauffälliger Bildgebung und unauffälligem intraoperativen Befund nicht erfolgen.</td>
</tr>
</tbody>
</table>

Literatur: [208]

Starker Konsens

6.8. **Konsensbasierte Empfehlung**

EK

Bei Patienten mit vergrößerten Lymphknoten kann zum lokalen Staging und zur lokalen Kontrolle eine Lymphadenektomie erfolgen.

Konsens

Hintergrund

Der Nutzen einer zusätzlichen systematischen oder extendierten Lymphadenektomie bei der operativen Therapie des Nierenzellkarzinoms ist nicht belegt. In einer randomisierten prospektiven Studie (n=772) bei Patienten ohne Hinweise für eine Lymphknotenmetastasierung im präoperativen Staging konnte weder hinsichtlich des Gesamtüberlebens noch des progressionsfreien Überlebens ein Vorteil für eine zusätzlich zur Nephrektomie durchgeführte extendierte radikale Lymphadenektomie beobachtet werden [208]. Dies gilt nach derzeitigem Kenntnisstand auch für lokal fortgeschrittene Tumoren. Ein systematisches Review fand ebenfalls keinen gesicherten Nutzen für die Lymphadenektomie bei klinisch fortgeschrittenen Tumorstadien [209]. Die Rolle einer Lymphadenektomie bei klinisch vergrößerten lokoregionären Lymphknoten (N1 M0) ohne weitere Hinweise für eine Fernmetastasierung ist nicht geklärt.
6.4. Adrenalektomie

<table>
<thead>
<tr>
<th>6.9.</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>A</td>
</tr>
<tr>
<td>Eine Adrenalektomie soll bei unauffälliger Bildgebung und unauffälligem intraoperativem Befund nicht erfolgen.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>3</td>
</tr>
<tr>
<td>Literatur: [209]</td>
<td></td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Hintergrund

Die Frage, ob eine radikale Nephrektomie mit ipsilateraler Adrenalektomie zu onkologisch besseren Ergebnissen (Gesamtüberleben, krebsspezifisches Überleben) führt, ist bislang in keinen randomisierten Kontrollstudien untersucht worden. Daten aus retrospektiven Vergleichsstudien zeigen, dass es keine statistisch signifikante Überlegenheit hinsichtlich des tumorspezifischen oder des Gesamtüberlebens zugunsten der simultanen ipsilateralen Adrenalektomie gibt [209]. Eine Indikation zur ipsilateralen Adrenalektomie stellt sich insofern nur bei in der präoperativen CT- oder MRT-Diagnostik geäußertem Verdacht einer Tumorinfiltration der Nebenniere oder bei intraoperativ makroskopisch suspektem Befund der Nebenniere.

6.5. Bedeutung der R1-Befunde

<table>
<thead>
<tr>
<th>6.10.</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>A</td>
</tr>
<tr>
<td>Bei der Nierentumorentfernung soll eine R0-Resektion erfolgen.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>3</td>
</tr>
<tr>
<td>Literatur: [157, 210-214]</td>
<td></td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.11.</th>
<th>Evidenzbasiertes Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Evidence</td>
<td>3</td>
</tr>
<tr>
<td>Eine signifikante Beeinflussung des tumorspezifischen Überlebens durch das Vorliegen von R1-Befunden bei makroskopisch tumorfreiem Resektionsgrund ist nicht nachgewiesen.</td>
<td></td>
</tr>
<tr>
<td>Literatur: [157, 210, 212, 214-216]</td>
<td></td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>
6.5 Bedeutung der R1-Befunde

6.12. Evidenzbasiertes Statement

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Patienten mit einem R1-Befund haben ein erhöhtes Risiko für ein Lokalrezidiv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Literatur: [211, 213, 214, 217]</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

6.13. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Bei Nachweis eines R1-Befundes in der endgültigen histopathologischen Untersuchung sollte eine systematische Überwachung und keine Nachoperation erfolgen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Level of Evidence</td>
</tr>
<tr>
<td>3</td>
<td>Literatur: [210, 214, 215, 218-220]</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

6.14. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Auf eine Schnellschnittuntersuchung kann bei makroskopisch unauffälligem Tumorbett verzichtet werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Level of Evidence</td>
</tr>
<tr>
<td>3</td>
<td>Literatur: [210, 221-226]</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Hintergrund

In den letzten Jahren hat die organerhaltende Nierentumorchirurgie im Sinne einer partiellen Nephrektomie oder Nierentumorenukleation die radikale Tumor nephrektomie als Standardtherapie des lokal begrenzten Nierenzellkarzinoms abgelöst [212, 227-232]. Dieser Therapiewandel basierte vornehmlich auf der Erkenntnis, dass durch die organerhaltende Chirurgie die Nierenfunktion besser erhalten und insbesondere das Risiko kardiovaskulärer Folgeerkrankungen gesenkt werden kann [144, 233-238]. Die onkologischen Ergebnisse scheinen gleichwertig, die perioperative Morbidität bei

Die Inzidenz eines positiven Absetzungsrandes (PAR) im endgültigen Präparat wird für die offene Chirurgie in verschiedenen Studien mit 0-7 %, für laparoskopische und roboterassistierte Eingriffe mit 1-4 % und 4-6 % angegeben [154, 156, 157, 204, 211, 213, 215, 244, 248-261]. Bei entsprechender Erfahrung scheinen sich also die PAR-Raten zwischen den gewählten chirurgischen Verfahren nicht signifikant zu unterscheiden [154, 156, 157, 252, 260, 262].

Daten aus kleineren Studien deuten darauf hin, dass die Tumorenukleation entlang der Pseudokapsel der klassischen Nierenteilresektion bezüglich des Auftretens von PAR überlegen sein könnte. Verze et al. verglichen retrospektiv die pathologischen Ergebnisse von n=309 partiell nephrektomierten mit n=226 tumorenukleierten Patienten, die unter einem cT1-Nierenzellkarzinom litten [263]. Die PAR-Raten lagen bei 6,7 % bzw. 1,3 % (p=0,01). Auch die multivariate Analyse zeigte ein knapp 5-fach erhöhtes Risiko für das Auftreten von R1-Befunden bei Durchführung einer klassischen partiellen Nephrektomie (p=0,04). Minervini et al. stellten die pathologischen sowie onkologischen Ergebnisse von n=982 partiell nephrektomierten denen von n=537 tumorenukleierten Nierenzellkarzinompatienten aus 16 Kliniken gegenüber [264]. Bei einem medianen Follow-up von etwa 4,5 Jahren unterschieden sich die 5-Jahresraten bezüglich des progressionsfreien Überlebens (88,9 vs. 91,4 %) und des tumorspezifischen Gesamtüberlebens (93,9 vs. 94,3 %) nicht signifikant voneinander, obwohl auch hier die Rate an R1-Befunden höher lag für klassisch partiell nephrektomierte Patienten (3,4 vs. 0,2 %).

Patienten mit imperativer Indikation zum nierenerhaltenden operativen Vorgehen (z. B. bei vorbestehender Niereninsuffizienz, funktioneller oder anatomischer Einzelniere) leiden im Vergleich zum Gesamtkollektiv häufiger unter größeren und ungünstiger lokализierten Tumoren. Dies erklärt, warum in nahezu allen Studien die imperative Indikation als Risikofaktor für das Auftreten von PAR identifiziert werden konnte, zumindest unter univariater Betrachtung. Hier werden R1-Raten von 9-28 % beschrieben [212, 265-267]. Bensalah et al. identifizierten (neben der Tumorlokalisierung) zusätzlich in einer multivariaten Analyse die imperative Indikation als unabhängigen Risikofaktor für das Vorliegen eines R1-Befundes im endgültigen histopathologischen Präparat (HR 14,3 [95 % CI 1,6-21,2], p=0,02) [214].

Das Auftreten von PAR, so eine Studie von Kwon et al. an 770 offen operierten Patienten, scheint unabhängig vom histopathologischen Subtyp und möglicherweise der Differenzierung des Nierenzellkarzinoms zu sein [213]. R1-Situationen traten bei 33/423 (8 %) aller Patienten mit Tumoren hohen malignen Potentials und 24/347 (7 %) Patienten mit gut differenzierten Tumoren auf. Im Gegensatz dazu publizierten Bensalah et al., dass PAR häufiger bei schlechter differenzierten Karzinomen auftraten [214].

Ob der Tumordurchmesser eine Rolle für das Auftreten von R1-Befunden spielt, ist noch umstritten. Während verschiedene Arbeitsgruppen keine Korrelation darstellen
konnten, fanden andere höhere Raten an PAR bei eher kleineren Nierenzellkarzinomen [216, 219, 248, 255]. Yossepowitch et al. zum Beispiel zeigten in univariaten Analysen, dass kleine Tumore zwar auf der einen Seite häufiger mit dem Auftreten von PAR, aber gleichzeitig seltener mit lokalen Rezidiven assoziiert waren [216]. Darüber, warum R1-Raten z. T. häufiger bei kleineren Nierentumoren gefunden wurden, kann nur spekuliert werden. Mögliche Erklärungsversuche beinhalten das häufigere Fehlen einer Pseudokapsel sowie technische Unachtsamkeiten des Chirurgen bei der Resektion oder des Pathologen bei der Präparation [210]. Andererseits, so Peycelon et al., scheint die Rate an R1-Befunden bei sehr großen Tumoren (> 7 cm) auch wieder anzusteigen [212]. Ebenso publizierten Ani et al. eine höhere Inzidenzrate an R1-Befunden bei Patienten mit größeren Tumoren bzw. höherem Tumorstadium [268].

Ob die Lage des Tumors in der Niere die Rate an PAR beeinflusst, kann noch nicht endgültig geklärt werden, da keine der vorliegenden Studien reproduzierbare Nephrometrierverfahren inkludierte. Verfügbare Daten deuten jedoch darauf hin, dass PAR häufiger nach Resektion zentral liegender Tumore beobachtet werden [214, 258]. In der Arbeit von Bensalah et al., in welcher 111 Patienten mit PAR evaluiert wurden, traten diese bei zentral liegenden Tumoren in 26 %, bei peripheren Tumoren nur in 9,1 % aller Fälle auf (p < 0,001) [214].

Ob PAR nach partieller Nephrektomie das Risiko für ein Auftreten von Lokalrezidiven erhöhen, ist noch nicht endgültig geklärt, auch wenn die Mehrzahl der Studien darauf hindeutet [211-214, 217]. Bernhard et al. fanden in einer Gruppe von 809 partiell nephrektomierten Patienten bei einem medianen Follow-up von 27 Monaten 26 Lokalrezidive (3,2 %) [211]. In der univariaten Analyse korrelierten ein hohes Tumorstadium (pT3a), eine Tumorgroße > 4 cm, die imperative Indikation, das Vorliegen bilateraler Tumore, eine schlechte Differenzierung (Fuhrman-Grad > 2) sowie ein R1-Befund mit dem Auftreten eines Lokalrezidivs. Das Vorliegen eines bilateralen Tumorleidens (HR 6,3), ein Tumordurchmesser > 4 cm (HR 4,6) sowie vor allem ein R1-Befund (HR 11,5) erwiesen sich auch in der multivariaten Analyse als unabhängige Prädiktoren für das Auftreten eines ipsilateralen Rezidivs, eine schlechte Differenzierung (Fuhrman-Grad > 2) sowie ein R1-Befund mit dem Auftreten eines Lokalrezidivs. Das Vorliegen eines bilateralen Tumorleidens (HR 6,3), ein Tumordurchmesser > 4 cm (HR 4,6) sowie vor allem ein R1-Befund (HR 11,5) erwiesen sich auch in der multivariaten Analyse als unabhängige Prädiktoren für das Auftreten eines ipsilateralen Rezidivs. Khalifeh et al. beschrieben nach Auswertung von 943 roboterassistiert operierten Patienten mit einer PAR-Rate von 2,2 % ein sogar 18,4-fach erhöhtes Risiko für das Auftreten von Tumorrezidiven [217]. Kwon et al. zeigten, dass Lokalrezidive in ihrem Patientenkollektiv (n=770, PAR-Rate 7 %) nur bei Tumoren mit höherem Malignitätsgrad auftraten [213].

Bensalah et al. evaluierten 111 Patienten mit PAR aus verschiedenen Zentren und konnten eine Korrelation zwischen dem Vorliegen eines R1-Befundes und dem Auftreten von Tumorrezidiven herstellen [214]. Auch die Zeit bis zum Eintreten eines Progresses war kürzer in der Gruppe mit PAR (21,4 vs. 24,7 Monate). In einer anschließend durchgeführten matched-pair-Analyse (n=101 Patienten mit und n=102 Patienten ohne PAR) zeigte sich jedoch kein signifikanter Unterschied mehr im rezidivfreien Überleben (p=0,11) oder tumorspezifischen Gesamtüberleben (p=0,4). In der multivariaten Analyse erwiesen sich die imperative Indikation zur Nieren teilresektion (HR 14,3 [95 % CI 1,6-21,2]) und die zentrale Tumorlokalisierung (HR 1,2 [95 % CI 1,06-1,8]) als unabhangige Risikofaktoren für das Auftreten eines Tumorrezidivs, nicht aber das Vorliegen eines R1-Befundes [214].

Eine weitere große Studie wurde von Yossepowitch et al. publiziert [216]. 77/1344 Patienten (5,7 %) zeigten einen R1-Befund, die mediane Nachbeobachtungszeit betrug 3,4 Jahre. Auch in dieser Studie unterschied sich das Risiko für ein Lokalrezidiv nicht zwischen Patienten mit und ohne PAR. Die 5-Jahre-Lokalrezidiv-Freiheit betrug 98 % bzw. 97 % (p=0,97). In der multivariaten Analyse zeigte sich im Gegensatz zur Tumorgroße...
das Vorliegen eines PAR nicht als Risikofaktor für das Auftreten eines Lokalrezidivs (HR 1,0 [95 % CI 0,23-4,3]) oder einer metachronen Metastasierung (HR 1,6 [95 % CI 0,6-4,1]).

Ebenso identifizierten Marszalek et al. bei einem medianen Follow-up von 70,7 Monaten im Gegensatz zur Tumorgröße und Differenzierung den Faktor PAR nicht als Prädiktor für das Auftreten eines Nierenzellkarzinomrezidivs bzw. für das Gesamtüberleben [157].

Kürzlich publizierten Ani et al. eine große Studie, in welche 664 kanadische Patienten retrospektiv eingeschlossen wurden, von denen 71 (10,7 %) einen R1-Status aufwiesen (Follow-up 7,9 Jahre) [268]. Hier lag die tumorspezifische 5-Jahres-Überlebensrate bei 90,9 % bzw. 91,9 % für Patienten mit bzw. ohne PAR (p=0,58). Auch in der multivariaten Analyse erwies sich der R1-Status nicht als unabhängiger Prädiktor für das krebsspezifische Überleben (HR 1,1 [95 % CI 0,66-1,94]).

Das tumorspezifische Überleben scheint also durch das Vorliegen eines R1-Befundes bei intraoperativ makroskopisch freiem Tumorbett nicht signifikant beeinflusst zu werden [157, 210, 212, 214-216, 268]. Und auch weil bei Durchführung einer prophylaktischen sekundären Nephrektomie im Fall eines PAR im endgültigen Präparat nur in 0-39 % noch Tumor in der Restniere gefunden wurde, wird im Fall eines mikroskopischen R1-Befundes in der endgültigen histopathologischen Untersuchung die systematische Überwachung und nicht mehr die Nachoperation empfohlen [210, 214, 215, 218-220].
6.6. Organerhaltende Operation

<table>
<thead>
<tr>
<th></th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.15.</td>
<td>Empfehlungsgrad A</td>
</tr>
<tr>
<td>Lokal begrenzte Tumoren im klinischen Stadium T1 sollen nierenerhaltend operiert werden.</td>
<td>Level of Evidence 3</td>
</tr>
<tr>
<td>Literatur: [144, 164]</td>
<td>Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.16.</td>
<td>Empfehlungsgrad B</td>
</tr>
<tr>
<td>Lokal begrenzte Tumoren im klinischen Stadium T2 sollten nierenerhaltend operiert werden.</td>
<td>Level of Evidence 3</td>
</tr>
<tr>
<td>Literatur: [144, 164]</td>
<td>Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.17.</td>
<td>Empfehlungsgrad B</td>
</tr>
<tr>
<td>Ist eine nierenerhaltende Operation nicht möglich, sollte eine Nephrektomie minimalinvasiv durchgeführt werden.</td>
<td>Level of Evidence 3</td>
</tr>
<tr>
<td>Literatur: [144, 164]</td>
<td>Konsens</td>
</tr>
</tbody>
</table>

Hintergrund

Operation vs. Beobachtung

Generell besteht die Empfehlung einen Nierentumor operativ zu entfernen. Zini et al. untersuchten das Überleben von Patienten mit einem kleinen Nierentumor (pT1a). In dieser Studie wurde die Nephrektomie mit der Beobachtung bzw. der aktiven Überwachung verglichen [269]. Das krebsspezifische 5-Jahres-Versterben betrug in der Gesamtgruppe der nephrektomierten Patienten 3,2 % und in der Gruppe der überwachten Patienten 12,6 %. Nach Matching blieb dieser Unterschied konsistent mit einer krebsspezifischen 5-Jahres-Mortalität von 4,4 % (Nephrektomie) vs. 12,4 % (Beobachtung). Anzumerken ist, dass trotz des Matchings der Gruppen ein Bias in der Patientenallokation nicht ausgeschlossen werden kann, da die Patienten in dem Überwachungsarm signifikant älter, in einem schlechteren Gesundheitszustand und weniger geeignet für eine Operation waren. Vergleichende Studien, die die perioperative Morbidität und Quality of Life-Ergebnisse untersuchen, sind nicht vorhanden [269].

Nierenerhaltende vs. radikale Nephrektomie

Das systematische Review von MacLennan et al. untersuchte die Zielgröße des 5- bzw. 10-Jahres-Gesamtüberlebens [144]. Zwischen der offenen radikalen Nephrektomie und der offenen nierenerhaltenden Operation ergaben sich keine Unterschiede bezüglich des Gesamt- und des krebsspezifischen Überlebens. Der Vergleich zwischen radikaler Nephrektomie (offen oder laparoskopisch) und nierenerhaltender Operation (offen oder laparoskopisch) ergab ein verbessertes Gesamtüberleben nur für die Patienten mit Tumoren im Stadium pT1a für das nierenerhaltende Vorgehen. Für Tumoren > 4 cm (> pT1a) zeigte sich kein Unterschied. Die Rückfallraten und das Auftreten von Metastasen waren vergleichbar zwischen den Operationsverfahren.

In der multizentrischen RCT EORTC-30904-Studie von van Poppel et al. wurden die Modalitäten der elektiven nierenerhaltenden Operation vs. die radikale Nephrektomie hinsichtlich des onkologischen Überlebens bei Patienten mit lokal begrenzten Nierentumoren < 5 cm untersucht [239]. Die ITT-Analyse ergab einen 10-Jahres-Gesamtüberlebensvorteil für die Gruppe der nephrektomierten Patienten (81,1 %, n=273) im Vergleich zu der Gruppe der nierenerhaltend operierten Patienten (75,7 %, n=268). Dieser Unterschied blieb nicht signifikant in der Zielgruppe der Patienten mit einem Nierenzellkarzinom, die die klinischen und pathologischen Einschlusskriterien erfüllten (krebsspezifisches 10-Jahres-Überleben: 79,6 % [Nephrektomie] vs. 78,0 % [Nierenerhalt]). Obwohl die EORTC-30904-Studie eine RCT war, sind die Ergebnisse zurückhaltend zu interpretieren, da die Studie aufgrund einer schwachen Rekrutierung vorzeitig geschlossen wurde, Protokolländerungen vorlagen und sie von der statistischen Berechnung „underpowered“ war. Bei 541 rekrutierten Patienten in einem 11-Jahreszeitraum bei 45 teilnehmenden Zentren ergibt sich zusätzlich ein potentiell nicht auszuschließendes Bias der Rekrutierung pro Zentrum, welches im Durchschnitt bei etwas über einem Patienten pro Jahr lag.

Lebensqualität und perioperative Ergebnisse

Aufgrund vergleichbarer onkologischer Ergebnisse zwischen der radikalen Nephrektomie und der nierenerhaltenden Operation wurden in einem zweiten systematischen Review die Parameter der perioperativen Ergebnisse und der Lebensqualität untersucht [144, 164]. Das Ergebnis dieses Reviews ergab eine besser erhaltene Nierenfunktion und eine bessere Lebensqualität nach nierenerhaltender Operation unabhängig vom angewendeten Operationsverfahren [164]. Aufgrund der gleich guten onkologischen Ergebnisse bei den Verfahren der radikalen und der nierenerhaltenden Operation sollte jenes Verfahren gewählt werden, das bessere perioperative Ergebnisse aufweist. Auf-
7. Systemtherapie des metastasierten klarzelligen Nierenzellkarzinoms

7.1. Einleitung zum metastasierten klarzelligen Nierenzellkarzinom

Das klarzellige Nierenzellkarzinom macht mit Abstand die größte Gruppe unter den Nierenzellkarzinomen aus (ca. 75-80 %), unter den Patienten mit metastasiertem Nierenzellkarzinom ist sein Anteil sogar noch größer [227]. Während das zum Zeitpunkt der Diagnosestellung klinisch lokalierte klarzellige Nierenzellkarzinom eine tendenziell etwas schlechtere Prognose aufzuweisen scheint als die Mehrzahl seltener vorkommender histopathologischer Subtypen [270-277], sind die wenigen und ausnahmslos retrospektiven Analysen unter metastasierten Patienten widersprüchlich. Während einige Autoren keine signifikanten Unterschiede im tumorspezifischen Überleben zwischen den verschiedenen Subtypen beschrieben [273], deuten aktuellere Arbeiten darauf hin, dass im Fall vorliegender Metastasierung das klarzellige Karzinom mit einem besseren Überleben verbunden ist [277-280].

7.2. Chemotherapie des metastasierten klarzelligen Nierenzellkarzinoms

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Beim metastasierten klarzelligen Nierenzellkarzinom soll eine palliative Chemotherapie nicht durchgeführt werden.</td>
</tr>
</tbody>
</table>

Level of Evidence 1++: Literatur: [281-283]

Starker Konsens

Hintergrund

7.3 Immuntherapie des metastasierten klarzelligen Nierenzellkarzinoms

7.2 Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierter Leitsatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Beim metastasierten klarzelligen Nierenzellkarzinom soll eine alleinige Zytokintherapie basierend auf subkutanem IL-2 und/oder IFN nicht durchgeführt werden.</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>2++</td>
</tr>
<tr>
<td>Literatur: [285-288]</td>
<td></td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Hintergrund

Die meisten retrospektiven Studien zeigten unter Anwendung von IL-2 oder IFN-α als Monotherapeutikum Ansprechraten von 10-15 %; durch kombinierten Einsatz beider Zytokine konnten auch Remissionsraten von bis zu 20 % erreicht werden [290-294].

Die besten Ansprechraten generell sind bei Lungen- und Weichteilmetastasen zu erwarten sowie bei Patienten mit geringer Tumorlast und in gutem Allgemeinzustand [281, 294-296]. Mit lokal inhalativer IL-2-Therapie beim pulmonal metastasierten Nierenzellkarzinom wurden in einzelnen Zentren ebenfalls Erfolge erzielt (Ansprechen 11-56 %; medianes Überleben 12-17 Monate) [297, 298].

Im Gegensatz zu IFN-α liegt für IL-2 keine placebokontrollierte randomisierte Studie zum Einsatz beim metastasierten Nierenzellkarzinom vor. Vorwiegend in den USA und vor Einführung der zielgerichteten Therapeutika wurde die Erstlinienbehandlung mit hochdosiertem IL-2 (i.v.) durchgeführt und evaluiert, oft mit widersprüchlichen Ergebnissen. Im Jahr 2003 publizierten Yang et al. eine randomisierte dreiamoige Studie, in der IL-2 als Hochdosistherapie (i.v., n=96) mit niedriger dosiertem IL-2 (i.v., n=92; s.c., n=93) verglichen wurde [291]. Auch wenn die allgemeine Ansprechrate in der Hochdosisgruppe mit 21 % signifikant höher lag als in den Patientenkollektiven, die IL-2 in niedrigerer Dosierung erhielten (11 % bzw. 10 %), so konnte kein Unterschied im Gesamtüberleben dargestellt werden. Auf der anderen Seite litten die mit hochdosiertem IL-2 behandelten Patienten unter signifikant höheren Nebenwirkungen, vor allem Knochenmarksdepression, Nausea, Hypotonus und ZNS-Alterationen [291].

Zu einem ähnlichen Ergebnis kamen McDermott et al., die die Effektivität von hochdosiertem IL-2 (i.v., n=95) mit einer Kombination aus niedriger dosiertem IL-2 und IFN-α
s.c., n=91) in der Behandlung des metastasierten Nierenzellkarzinoms untersuchten [299]. Auch hier lag die Ansprechrate bei Applikation der Hochdosis-IL-2-Therapie mit 23,2 % signifikant über der von s.c.-behandelten Patienten (9,9 %), ohne dass sich dies in einem verbesserten Gesamtüberleben widerspiegelte hätte. Allerdings konnten die Autoren zeigen, dass eine Subgruppe von Patienten mit primären Knochen- oder Leberfiliae unter der IL-2-Hochdosistherapie signifikant länger überlebte (14,7 versus 8 Monate).

Zwei randomisierte Phase-III-Studien zeigten überdies, dass die systemische Therapie mittels IFN-α beim primär metastasierten Nierenzellkarzinom dann signifikant erfolg- reicher ist, wenn der Primärtumor vor Behandlungsbeginn operativ entfernt wurde [300, 301]. Der primäre Endpunkt der Studie war die Verbesserung des Gesamtüberlebens. Die Kontrollgruppe erzielte in den beiden Studien jeweils 7 bzw. 8,1 Monate, wohingegen Patienten mit einer palliativen Nephrektomie mit 17 bzw. 11,1 Monaten ein signifikant verbessertes Gesamtüberleben aufweisen konnten [300, 301].

7.4 Chemoimmuntherapie des klarzelligen Nierenzellkarzinoms

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Beim metastasierten klarzelligen Nierenzellkarzinom soll eine Chemoimmuntherapie nicht durchgeführt werden.</td>
</tr>
</tbody>
</table>

Level of Evidence

1++

Literatur: [303]

Starker Konsens

Hintergrund

Die in Deutschland am häufigsten angewandten Therapieschemata unter Einbeziehung von IL-2 (s.c.), IFN-α (s.c.) und 5-FU (i.v.) bzw. IFN-α (s.c.) und Vinblastin (i.v.) zeigen Ansprechraten von 20 % bis zu 30 % [295, 304-318]. Die überwiegende Anzahl der erreichten Remissionen waren jedoch lediglich partielle Remissionen von limitierter Dauer [290, 294, 295]. Erfolgsversprechend scheint eine Zytokintherapie am ehesten bei Patienten mit günstigem Risikoprofil. Während eine deutsche randomisierte Multicenter-Phase-III-Studie auch einen Nutzen der Dreifach-Chemoimmuntherapie für Patienten mit intermediärem Risikoprofil nahelegte, konnte eine französische randomisierte Multicenter-Phase-III-Studie (PERCY Quattro) keinen Unterschied im medianen Gesamtüberleben für die Zweifach-Therapie mit IFN und IL-2 gegenüber den subkutan verabreichten Einzelsubstanzen IFN, IL-2 und einer Hormontherapie (MPA) nachweisen [295, 319].

Nur eine kontrollierte randomisierte Phase-III-Studie (MRC RE04/EORTC GU 30012) verglich direkt die Wirksamkeit einer Chemoimmuntherapie (IFN-α/IL-2/5-FU) mit der einer IFN-α-Monotherapie [303]. Der primäre Endpunkt war das Gesamtüberleben. Die Studie inkludierte 1006 Patienten, die mediane Beobachtungszeit betrug 37,2 Monate. Die Rate der Remissionen war signifikant höher im Chemoimmuntherapiearm (23 % vs. 16 %, p=0,045), allerdings erreichten in beiden Gruppen nur je 11 Patienten eine komplette Remission. Patienten, die mittels Chemoimmuntherapie behandelt wurden, zeigten ein medianes Gesamtüberleben von 18,6 Monaten, welches sich nicht signifikant von dem der Patienten unter IFN-α mono unterschied (18,8 Monate; p=0,55). Es gab ebenso keine Unterschiede im progressionsfreien Überleben (5,3 vs. 5,5 Monate). Die Kombinationstherapie führte jedoch zu signifikant höherer Toxizität und häufiger zu Behandlungsunterbrechungen (45 % vs. 21 %). Die Studie zeigte somit keinen Vorteil für die Durchführung einer Chemoimmuntherapie im Vergleich zur IFN-α-Immuntherapie allein. Einschränkend muss allerdings gesagt werden, dass die Patientenselektion für eine Immuntherapie nicht optimal war: weniger als 10 % der Patienten gehörten entsprechend der MSKCC-Risiko-Kriterien zur Gruppe mit niedrigem Risiko, mehr als 2/3 hatten Metastasen in mehreren Organen und mehr als 10 % waren nephrektomiert worden. Darüber hinaus erhielten 62 % der Patienten lediglich einen einzigen Therapiezyklus.
7.5 Zielgerichtete Therapie des fortgeschrittenen und/oder metastasierten klarzelligen Nierenzellkarzinoms

7.5.1. Erstlinientherapie

Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Empfehlung</th>
<th>Level of Evidence</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bei Patienten mit fortgeschrittenem und/oder metastasiertem klarzelligen Nierenzellkarzinom und niedrigem oder intermediärem Risiko sollen in der Erstlinientherapie Sunitinib, Pazopanib oder Bevacizumab + INF verwendet werden.</td>
<td>1++</td>
<td>[285, 287, 302]</td>
</tr>
</tbody>
</table>

Konsens

7.5.2. Zweitlinientherapie

Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Empfehlung</th>
<th>Level of Evidence</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>In der Zweitlinientherapie nach Sunitinib oder Zytokinen soll Axitinib verwendet werden. Für Axitinib nach Bevacizumab, Pazopanib oder Temsirolimus liegen keine ausreichenden Daten vor.</td>
<td>1+</td>
<td>[320]</td>
</tr>
</tbody>
</table>

Konsens
7.7. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>In der Zweitlinientherapie nach Zytokinen können Sorafenib oder Pazopanib als Alternative zu Axitinib eingesetzt werden.</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>Literature: [321, 322]</td>
</tr>
</tbody>
</table>

Konsens

7.8. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nur nach Versagen von mindestens einem VEGF-Inhibitor soll Everolimus eingesetzt werden.</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>Literature: [323]</td>
</tr>
</tbody>
</table>

Konsens

7.9. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nach Versagen eines mTOR-Inhibitors kann die Folgetherapie mittels eines Tyrosinkinaseinhibitors (TKI) erfolgen.</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>Literature: [324]</td>
</tr>
</tbody>
</table>

Konsens

Hintergrund

Die Empfehlungen basieren auf einer systematischen Literaturrecherche (Suchdatum: Januar 2013). Für Einzelheiten wird auf den Leitlinienreport und die Evidenzberichte zur Leitlinie verwiesen (siehe 1.8).

Auch wenn die klassischen Zytokin-basierten Therapien heute nicht mehr zum Einsatz kommen, stellt die hochdosierte intravenöse IL-2-Gabe für Patienten mit oligometastatischem Befall und sehr gutem Allgemeinzustand eine alternative Therapie-
option in der Erstlinie dar. Diese Therapie ist ausschließlich spezialisierten Zentren vorbehalten und soll nicht von Unerfahrenen eingesetzt werden.

Da die Mehrzahl der Studien Patienten mit einem niedrigen bzw. intermediären Risiko einschließt, beziehen sich die Empfehlungen vorwiegend auf dieses Patientenkollektiv. Lediglich für den mTOR-Inhibitor Temsirolimus liegt eine Phase-III-Studie für Patienten mit einem hohen Risikoprofil vor. Die Risikostratifizierung erfolgt anhand eines Prognosescores (siehe Tabelle 8 und Tabelle 9.). Für die TKIs finden sich neben den Zulassungsstudien weitere Quellen, die Patienten mit ungünstigem Risikoprofil einschließen, sodass die Substanzen auch für Patienten mit schlechter Prognose empfohlen werden können.

Bevacizumab weist zwar eine ähnliche Wirksamkeit in der Erstlinie auf, erscheint allerdings in der ungünstigen Subgruppe weniger aktiv, sodass die Substanz unserer Meinung nach bei ungünstigem Risikoprofil nicht eingesetzt werden sollte.

Das signifikant verbesserte progressionsfreie Überleben (progression-free survival, PFS) für Axitinib vs. Sorafenib in der AXIS-Studie (6,7 vs. 4,7 Monate; HR 0,665) konnte zwar keine Verbesserung für das Gesamtüberleben erzielen (20,1 vs. 19,2 Monate; HR 0,97), die Ergebnisse sind allerdings konsistent mit einer Netzwerkanalyse (verbessertes PFS: HR 0,67) und unterstützen damit die Empfehlung für Axitinib in dieser Therapiesituation (siehe Evidenzbericht zur Leitlinie unter http://leitlinienprogramm- onkologie.de/Nierenzellkarzinom.85.0.html). Die Qualität der Evidenz, dass Axitinib und Sorafenib ein ähnliches Gesamtüberleben erzielen, ist moderat. Die Qualität der Evidenz, dass Axitinib zu einem längeren PFS bei ähnlicher Lebensqualität führt, ist niedrig (siehe Evidenzbericht zur Leitlinie unter http://leitlinienprogramm- onkologie.de/Nierenzellkarzinom.85.0.html).

Mit der GOLD-Studie stehen mittlerweile auch Daten zur Drittlinientherapie zur Verfügung. Die Studie testete Dovitinib und Sorafenib nach Versagen eines mTOR- und eines VEGFR-Inhibitors. Das PFS war mit 3,7 und 3,6 Monaten ähnlich, ein Unterschied im Gesamtüberleben konnte nicht generiert werden (11,1 vs. 11,0 Monate) [324]. Diese Daten stützen die Fortsetzung der Tumortherapie mit dem Einsatz eines Tyrosinkinaseinhibitors in der Drittlinie, da die Daten zur fortgesetzten Therapie effektiver erscheinen als in der Placebo-Kontrolle der RECORD-1-Studie (nach VEGF-Versagen: 1,9 Monate) [323].

Tabelle 6: VEGF-Inhibitoren

<table>
<thead>
<tr>
<th>VEGF-Inhibitoren</th>
<th>Anwendungsgebiete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axitinib</td>
<td>Zweitlinie nach Sunitinib oder Zytokinen</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>Erstlinie</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>Erstlinie oder nach Zytokinen</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>nach Zytokinen</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>Erstlinie</td>
</tr>
</tbody>
</table>

Tabelle 7: mTOR-Inhibitoren

<table>
<thead>
<tr>
<th>mTOR-Inhibitoren</th>
<th>Zulassung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everolimus</td>
<td>nach VEGF-Versagen</td>
</tr>
<tr>
<td>Temsirolimus</td>
<td>Erstlinie, ungünstiges Risikoprofil</td>
</tr>
</tbody>
</table>
Tabelle 8: Prognosekriterien zur Bestimmung der Risikogruppe [111]

<table>
<thead>
<tr>
<th>IMDC-Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Status < 80 %</td>
</tr>
<tr>
<td>Intervall von Diagnose bis zur Systemtherapie < 1 Jahr</td>
</tr>
<tr>
<td>Hämoglobin unterhalb des Normwertes</td>
</tr>
<tr>
<td>Hyperkalziämie</td>
</tr>
<tr>
<td>Neutrophile oberhalb des Normwertes</td>
</tr>
<tr>
<td>Thrombozyten oberhalb des Normwertes</td>
</tr>
</tbody>
</table>

Tabelle 9: Prognose nach Risikogruppe [111]

<table>
<thead>
<tr>
<th>Prognose nach IMDC-Kriterien</th>
<th>Medianes Gesamtüberleben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gutes Risikoprofil (0 Risikofaktoren)</td>
<td>43,2 Monate</td>
</tr>
<tr>
<td>Intermediäres Risikoprofil (1-2 Risikofaktoren)</td>
<td>22,5 Monate</td>
</tr>
<tr>
<td>Ungünstiges Risikoprofil (≥ 3 Risikofaktoren)</td>
<td>7,8 Monate</td>
</tr>
</tbody>
</table>

Tabelle 10: Systemtherapieoptionen gemäß Risikoprofil in der Erstlinientherapie

<table>
<thead>
<tr>
<th>Therapielinie</th>
<th>Risikoprofil</th>
<th>Standard</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erstlinie</td>
<td>Gut/intermediär</td>
<td>Bevacizumab + IFN Sunitinib</td>
<td>hochdosiertes IL-2</td>
</tr>
<tr>
<td></td>
<td>ungünstig</td>
<td>Temsirolimus</td>
<td>Pazopanib Sunitinib</td>
</tr>
</tbody>
</table>
Tabelle 11: Systemtherapieoptionen gemäß Vortherapie in der Zweitlinientherapie

<table>
<thead>
<tr>
<th>Therapielinie</th>
<th>Vortherapie</th>
<th>Standard</th>
<th>Option</th>
</tr>
</thead>
</table>
| Zweitlinie | nach Zytokinen | Axitinib | Pazopanib
| | nach VEGF-Versagen | Everolimus | Sorafenib |
| | nach Sunitinib | Axitinib | Everolimus |
| | nach Temsirolimus | Axitinib | Pazopanib
| | | Sorafenib | Sunitinib |

7.5.3. Charakterisierung der beim Nierenzellkarzinom eingesetzten Medikamente (in alphabetischer Reihenfolge)

7.5.3.1. Axitinib

Die AXIS-Studie vergleicht mit Axitinib und Sorafenib zwei aktive Substanzen in der reinen Zweitlinientherapie. 723 Patienten mit Progress nach Sunitinib, Bevacizumab, einem Zytokin oder Temsirolimus konnten in die Studie eingeschlossen werden.

In der Subgruppenanalyse nach Zytokinversagen (n=251) zeigte sich mit 12,1 Monaten ein signifikant besseres PFS für Axitinib im Vergleich zu 6,5 Monaten für Sorafenib (HR 0,464 [CI 95 % 0,318-0,676]; p < 0,0001) [560]. Das OS (overall survival) verfehlte jedoch mit 29,4 bzw. 27,8 Monaten das Signifikanzniveau (HR 0,813 [CI 95 % 0,555-1,191]; p=0,1435).[325]

389 Patienten mit Versagen von Sunitinib standen in der AXIS-Studie zur Auswertung bereit. Axitinib war mit 4,8 Monaten PFS (CI 95 % 4,5-6,4) dem Sorafenib mit 3,4 Monaten (CI 95 % 2,8-4,7) statistisch überlegen (HR 0,741 [CI 95 % 0,573-0,958]; p=0,0107)[560]. Das Gesamtüberleben war mit 15,2 und 16,5 Monaten für Axitinib und Sorafenib nicht signifikant verschieden (HR 0,997 [CI 95 % 0,782-1,270]; p=0,4902) [320].
Tabelle 12: Ergebnisse der Zulassungsstudie AXIS

<table>
<thead>
<tr>
<th>Nutzen/Schadensaspekte</th>
<th>Axitinib</th>
<th>Sorafenib</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansprechraten (ORR=CR + PR)</td>
<td>23 %</td>
<td>12 %</td>
<td>0,0001</td>
</tr>
<tr>
<td>Clinical Benefit Rate (CR + PR + SD)</td>
<td>NR</td>
<td>NR</td>
<td>-</td>
</tr>
<tr>
<td>Progressionsfreies Überleben</td>
<td>6,7 Monate</td>
<td>4,7 Monate</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>Gesamtüberleben</td>
<td>20,1 Monate</td>
<td>19,2 Monate</td>
<td>0,3744</td>
</tr>
<tr>
<td>Abbruchraten*</td>
<td>3,9 %</td>
<td>8,2 %</td>
<td></td>
</tr>
<tr>
<td>Dosisreduktion</td>
<td>31 %</td>
<td>52 %</td>
<td></td>
</tr>
<tr>
<td>Nebenwirkungen Grad 3 + 4</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

*: AE-assoziiert, AE: adverse events; ORR: objective response rate; CR: complete regression; PR: partial regression; SD: stable disease; NR: no remission, NA: Not applicable

7.5.3.2. Bevacizumab/IFN

Bevacizumab ist ein rekombinanter monoklonaler Antikörper, der zirkulierendes VEGF neutralisiert. Durch Bindung mit dem Antikörper wird die Rezeptorbinding von intravasal zirkulierendem VEGF blockiert und damit die Aktivierung VEGF-abhängiger Signalwege verhindert.

Tabelle 13: Ergebnisse der Zulassungsstudie AVOREN

<table>
<thead>
<tr>
<th>Nutzen/Schadensaspekte</th>
<th>Bev/INF</th>
<th>Placebo/INF</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansprechraten (ORR=CR + PR)</td>
<td>31 %</td>
<td>13 %</td>
<td>0,0001</td>
</tr>
<tr>
<td>Clinical Benefit Rate (CR + PR + SD)</td>
<td>77 %</td>
<td>63 %</td>
<td>-</td>
</tr>
<tr>
<td>Progressionsfreies Überleben</td>
<td>10,2 Monate</td>
<td>5,4 Monate</td>
<td>0,0001</td>
</tr>
<tr>
<td>Gesamtüberleben</td>
<td>23,3 Monate</td>
<td>21,3 Monate</td>
<td>0,3360</td>
</tr>
<tr>
<td>Abbruchraten*</td>
<td>28 %</td>
<td>12 %</td>
<td>-</td>
</tr>
<tr>
<td>Dosisreduktion**</td>
<td>40 %</td>
<td>30 %</td>
<td>-</td>
</tr>
<tr>
<td>Nebenwirkungen Grad 3 + 4</td>
<td>60,2 %</td>
<td>45,1 %</td>
<td>-</td>
</tr>
</tbody>
</table>

*: AE-assoziiert bezogen auf Abbruchraten
**: nur IFN-Dosisreduktion

Die Kombination von Bevacizumab (10 mg/kg 2-wöchentlich) mit Interferon-α (9 Mio. IE s.c. 3x wöchentlich) erreichte in einer randomisierten Studie bei Patienten mit gutem...
und mittleren Risiko eine Verlängerung der progressionsfreien Zeit (10,2 Monate vs. 5,4 Monate) und eine höhere Remissionsrate (31 % versus 13 %) gegenüber Interferon-α [326]. Die Abbruchrate wegen Nebenwirkungen war bei Kombinationstherapie 28 % Bev/INF vs. 12 % Placebo/INF. 3 von 327 Patienten verstarben infolge der Therapie.

Eine Subgruppenanalyse zeigt, dass bei Patienten, die eine IFN-α-Dosis von 3 oder 6 Millionen IE 3x wöchentlich erhielten, das progressionsfreie Überleben gleich, die Nebenwirkungsrate in der Gruppe der Patienten mit niedriger dosiertem Interferon-α aber signifikant geringer war. Die prospektive einarmige Bevlin-Studie konnte diese Daten bestätigen [327].

Rini et al. (2008) zeigten, dass die Kombination von Bevacizumab und Interferon vs. Interferon allein ein verlängertes progressionsfreies Überleben (8,5 vs. 5,2 Monate) und eine signifikant höhere Ansprechrate (26 % vs. 13 %) ergab [288].

Tabelle 14: Ergebnisse der Phase-III-Studie der Cancer and Leukemia Group B (CALGB)

<table>
<thead>
<tr>
<th>Nutzen/Schadensaspekte</th>
<th>Bev/INF</th>
<th>INF</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansprechraten (ORR=CR + PR)</td>
<td>26 %</td>
<td>13 %</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>Clinical Benefit Rate (CR + PR + SD)</td>
<td>NR</td>
<td>NR</td>
<td>-</td>
</tr>
<tr>
<td>Progressionsfreies Überleben</td>
<td>8,5 Monate</td>
<td>5,2 Monate</td>
<td>< 0,0001</td>
</tr>
<tr>
<td>Gesamtüberleben</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbruchrate*:</td>
<td>19 %</td>
<td>24 %</td>
<td>-</td>
</tr>
<tr>
<td>Dosisreduktion**:</td>
<td>46 %</td>
<td>37 %</td>
<td>-</td>
</tr>
<tr>
<td>Nebenwirkungen Grad 3 +4:</td>
<td>79 %</td>
<td>61 %</td>
<td>< 0,0001</td>
</tr>
</tbody>
</table>

*: AE-assoziiert
**: nur IFN-Dosisreduktion
ORR: objective response rate; CR: complete regression; PR: partial regression; SD: stable disease; NR: no remission

7.5.3.3. **Everolimus**

Nach der Einführung der VEGF-Inhibitoren war RECORD-1 die erste Phase-III-Studie zur Folgetherapie beim Nierenzellkarzinom. Insofern wurde Everolimus mit Placebo verglichen, unabhängig von der Anzahl der Vortherapien. Everolimus war mit einem PFS von 4,9 Monaten dem Placebo mit 1,9 Monaten überlegen (HR 0,33 [CI 95 % 0,25-0,43]; p < 0,001). Aufgrund des Wechsels von 80 % aus der Behandlung mit Placebo in die Therapie mit Everolimus wurde mit 14,8 und 14,4 Monaten ein ähnliches OS erreicht (HR 0,87 [CI 95 % 0,65-1,15]; p=0,162) [328]. Ein objektivierbares Tumoransprechen wurde in 1 bzw. 0 % für Everolimus bzw. Placebo beobachtet [323].
Tabelle 15: Ergebnisse der Zulassungsstudie RECORD-1

<table>
<thead>
<tr>
<th>Nutzen/Schadensaspekte</th>
<th>Everolimus</th>
<th>Placebo</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansprechraten (ORR=CR + PR)</td>
<td>1 %</td>
<td>0 %</td>
<td>-</td>
</tr>
<tr>
<td>Clinical Benefit Rate (CR + PR + SD)</td>
<td>64 %</td>
<td>32 %</td>
<td>-</td>
</tr>
<tr>
<td>Progressionsfreies Überleben</td>
<td>4,9 Monate</td>
<td>1,9 Monate</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Gesamtüberleben</td>
<td>14,8 Monate</td>
<td>14,4 Monate</td>
<td>0,162**</td>
</tr>
<tr>
<td>Abbruchraten*</td>
<td>10 %</td>
<td>4 %</td>
<td>-</td>
</tr>
<tr>
<td>Dosisreduktion</td>
<td>7 %</td>
<td>1 %</td>
<td>-</td>
</tr>
<tr>
<td>Nebenwirkungen Grad 3 + 4</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
</tr>
</tbody>
</table>

* AE-assoziiert, **nicht signifikant, NA: Not applicable

ORR: objective response rate; CR: complete regression; PR: partial regression; SD: stable disease; NR: no remission

7.5.3.4. Pazopanib

Pazopanib ist ein oraler TKI und inhibiert die VEGF-Rezeptoren 1, 2 und 3, die PDGF-Rezeptoren alpha und beta sowie c-KIT.

Die VEG105192-Studie schloss 435 Patienten mit und ohne Vorbehandlung ein. 202 Patienten waren mit einem Zytokin vorbehandelt und erhielten entweder Pazopanib 800 mg täglich oder Placebo. Der primäre Endpunkt der Studie war das PFS. Das PFS war in einer „intention to treat“-Analyse für den Pazopanib-Arm signifikant länger (9,2 vs. 4,2 Monate, HR 0,46, p < 0,01). Ebenso war die Response Rate (CR + PR) mit 30 % vs. 3 % im Pazopanib-Arm überlegen, die Dauer der Response bei den Pazopanib-behandelten Patienten lag im Median bei 58,7 Wochen.

In der Subgruppe der Zytokin-vorbehandelten Patienten konnte die Behandlung mit Pazopanib ein PFS von 7,4 Monaten und mit Placebo 4,2 Monate erreichen (HR 0,54 [CI 95 % 0,35-0,84]; p < 0,001) [321]. 48 % der mit Placebo behandelten Patienten wechselten bei Progression in die Behandlung mit Pazopanib. In der finalen Analyse war das OS der gesamten Studienpopulation mit 22,9 bzw. 20,5 Monaten nicht unterschiedlich (HR 0,91 [CI 95 % 0,71-1,16]; p=0,224) [329]. Auch in der Subgruppe der vorbehandelten Patienten konnte mit 22,7 Monaten für Pazopanib und 18,7 Monaten für Placebo (HR 0,82 [CI 95 % 0,57-1,16]) kein wesentlicher Unterschied hinsichtlich der beiden Behandlungsgruppen gezeigt werden.
<table>
<thead>
<tr>
<th>Nutzen/Schadensaspekte</th>
<th>Pazopanib</th>
<th>Placebo</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansprechraten (ORR=CR + PR)</td>
<td>30 %</td>
<td>3 %</td>
<td>-</td>
</tr>
<tr>
<td>Clinical Benefit Rate (CR + PR + SD)</td>
<td>68 %</td>
<td>44 %</td>
<td>-</td>
</tr>
<tr>
<td>Progressionsfreies Überleben</td>
<td>9,2 Monate</td>
<td>4,2 Monate</td>
<td>p < 0,01</td>
</tr>
<tr>
<td>Gesamtüberleben</td>
<td>22,9 Monate</td>
<td>20,5 Monate</td>
<td>0,224**</td>
</tr>
<tr>
<td>Abbruchraten*</td>
<td>14 %</td>
<td>3 %</td>
<td>-</td>
</tr>
<tr>
<td>Dosisreduktion</td>
<td>NR</td>
<td>NR</td>
<td>-</td>
</tr>
<tr>
<td>Nebenwirkungen Grad 3 +4</td>
<td>33 %</td>
<td>7 %</td>
<td>-</td>
</tr>
</tbody>
</table>

* AE-assoziiert, **nicht signifikant
ORR: objective response rate; CR: complete regression; PR: partial regression; SD: stable disease; NR: no remission

Das vorläufige Gesamtüberleben (Pazopanib vs. Sunitinib) betrug 28,4 vs. 29,3 Monate (n. s.), das PFS 8,4 vs. 9,5 Monate (n. s.) und die objektive Remission 31 % vs. 25 %.

<table>
<thead>
<tr>
<th>Nutzen/Schadensaspekte</th>
<th>Pazopanib</th>
<th>Sunitinib</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansprechraten (ORR=CR + PR)</td>
<td>31 %</td>
<td>25 %</td>
<td>0,03</td>
</tr>
<tr>
<td>Clinical Benefit Rate (CR + PR + SD)</td>
<td>70 %</td>
<td>68 %</td>
<td>-</td>
</tr>
<tr>
<td>Progressionsfreies Überleben</td>
<td>8,4 Monate</td>
<td>9,5 Monate</td>
<td></td>
</tr>
<tr>
<td>Gesamtüberleben</td>
<td>28,4 Monate</td>
<td>29,3 Monate</td>
<td>0,28**</td>
</tr>
<tr>
<td>Abbruchraten*</td>
<td>24 %</td>
<td>20 %</td>
<td>-</td>
</tr>
<tr>
<td>Dosisreduktion</td>
<td>44 %</td>
<td>51 %</td>
<td>-</td>
</tr>
<tr>
<td>Nebenwirkungen Grad 3 +4</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
</tr>
</tbody>
</table>

*AE-assoziiert auf Abbruchraten bezogen, **nicht signifikant, NA: Not applicable
ORR: objective response rate; CR: complete regression; PR: partial regression; SD: stable disease; NR: no remission
7.5.3.5. **Sorafenib**

Sorafenib ist ein RAF-Kinaseninhibitor und hemmt die Autophosphorylierung von VEGF-Rezeptor-Isoformen 2 und 3 sowie den PDGF-Rezeptor und c-KIT. Die Angriffspunkte sind Tumorzellen und Tumorgefäße [330].

Die TARGET-Studie war die erste Phase-III-Studie, die einen TKI nach Zytokinversagen oder bei Zytokinungeneignheit untersuchte. Insgesamt wurden 903 Patienten eingeschlossen und mit Placebo oder Sorafenib 800 mg tgl. behandelt. Der primäre Endpunkt war das Gesamtüberleben (OS). Aufgrund des absehbaren OS-Vorteils in der Zwischenanalyse wurde Patienten im Placeboarm der Wechsel in die aktive Behandlung mit Sorafenib ermöglicht. In der abschließenden Analyse ergab sich damit ein OS von 19,3 Monaten unter Sorafenib, wohingegen der Placeboarm 15,9 Monate erreichte (HR 0,77 [CI 95 % 0,63-0,95]; p=0,02), womit die zuvor definierte Grenze der Signifikanz nach O'Brien-Fleming jedoch nicht erreicht wurde. Bei der prospektiv geplanten Endanalyse zum Gesamtüberleben nach Zensierung der Cross-over-Patienten fiel der Unterschied signifikant zugunsten der Sorafenib-behandelten Patienten aus (17,8 vs 14,3 Monate, p=0,029) [331]. Das mediane progressionsfreie Überleben (PFS) betrug 5,5 Monate für Sorafenib und 2,8 Monate in der Placebogruppe (HR 0,44 [CI 95 % 0,35-0,55]; p < 0,01) in der zentralen Auswertung und unterstreicht damit die Wirksamkeit der Substanz gegen über Placebo [322].

Tabelle 18: Ergebnisse der Zulassungsstudie TARGET

<table>
<thead>
<tr>
<th>Nutzen/Schadensaspekte</th>
<th>Sorafenib</th>
<th>Placebo</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansprechraten (ORR=CR + PR)</td>
<td>10 %</td>
<td>2 %</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Clinical Benefit Rate (CR + PR + SD)</td>
<td>62 %</td>
<td>37 %</td>
<td>-</td>
</tr>
<tr>
<td>Progressionsfreies Überleben</td>
<td>5,5 Monate</td>
<td>2,8 Monate</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Gesamtüberleben</td>
<td>19,3</td>
<td>15,9</td>
<td>0,02**</td>
</tr>
<tr>
<td>Abbruchraten*</td>
<td>10 %</td>
<td>8 %</td>
<td>-</td>
</tr>
<tr>
<td>Dosisreduktion</td>
<td>13 %</td>
<td>3 %</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Nebenwirkungen Grad 3 + 4</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
</tr>
</tbody>
</table>

*AE-assoziiert,**nicht signifikant, NA: Not applicable
ORR: objective response rate; CR: complete regression; PR: partial regression; SD: stable disease; NR: no remission

7.5.3.6. **Sunitinib**

Sunitinib ist ein Tyrosinkinaseinhibitor, der neben den VEGF-Rezeptor-Isoformen 2 und 3 auch den PDGF-Rezeptor sowie die Rezeptoren für c-kit, FLT, CSF und RET inhibiert.

Nachdem in Phase-II-Studien die Toxizität überprüft und eine günstige Remissionsrate gesehen wurde, erfolgte die Phase-III-Studie bei Patienten mit klarzelligem Nierenzellkarzinom ohne Vorbehandlung und mit günstigem und mittlerem Risikoprofil nach Motzer [75, 278]. IFN-α 9 Mio. IE 3× pro Woche (Zieldosis) wurde mit Sunitinib 50 mg 1× tgl. (4 Wochen Therapie, 2 Wochen Pause) verglichen [285]. Die mediane progressionsfreie Zeit (primärer Endpunkt der Studie) war für Patienten unter Sunitinib mit 11
Monaten deutlich verlängert gegenüber 5 Monaten für IFN. Ebenso war bereits in der 2. Interimsanalyse die objektive Remissionsrate mit 31 % gegenüber 6 % signifikant höher.

In der finalen Analyse betrug die Prüfarzt-basierte Ansprechrate unter Sunitinib 47 % vs. 12 % INF im Vergleichsarm. Elf Patienten hatten unter Sunitinib eine Komplettremission im Vergleich zu 4 Patienten unter der Zytokintherapie.

Bei 19 % unter Sunitinib bzw. 23 % unter INF wurde die Behandlung wegen Toxizität vorzeitig beendet.

Die Lebensqualität der Patienten unter Sunitinib war signifikant besser als jene unter IFN-α. Bei der nierenkrebsspezifischen Erhebung der Lebensqualität (FKSI-DRS) wurde zudem unter Sunitinib ein signifikanter Anstieg der Lebensqualität über den Ausgangswert beobachtet [332].

Die finalen Daten zum Gesamtüberleben betrugen 26,4 vs. 21,8 Monate [333]. Der p-Wert für die unstratifizierte Analyse der ITT-Population war nicht signifikant und lag bei p=0,051.

Tabelle 19: Ergebnisse der Zulassungsstudie NCT00098657

<table>
<thead>
<tr>
<th>Nutzen/Schadensaspekte</th>
<th>Sunitinib</th>
<th>INF-α</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansprechraten (ORR=CR + PR)**</td>
<td>31 %</td>
<td>6 %</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Clinical Benefit Rate (CR + PR + SD)</td>
<td>79 %</td>
<td>55 %</td>
<td>-</td>
</tr>
<tr>
<td>Progressionsfreies Überleben</td>
<td>11 Monate</td>
<td>5 Monate</td>
<td>0,001</td>
</tr>
<tr>
<td>Gesamtüberleben</td>
<td>26,4 Monate</td>
<td>21,8 Monate</td>
<td>0,051</td>
</tr>
<tr>
<td>Abbruchraten*:</td>
<td>19 %</td>
<td>23 %</td>
<td>-</td>
</tr>
<tr>
<td>Dosisreduktion:</td>
<td>50 %</td>
<td>27 %</td>
<td>-</td>
</tr>
<tr>
<td>Nebenwirkungen Grad 3 + 4:</td>
<td>NA</td>
<td>NA</td>
<td>-</td>
</tr>
</tbody>
</table>

*AE-assoziiert, NA: Not applicable
ORR: objective response rate; CR: complete regression; PR: partial regression; SD: stable disease; NR: no remission
** Zentrale Beurteilung

7.5.3.7. Temsirolimus

Der mTOR-Inhibitor Temsirolimus wurde in einer Phase-III-Studie gegenüber IFN-α und einer Kombination von Temsirolimus und IFN-α bei unbehandelten Patienten auf Basis für Hochrisikopatienten modifizierter Kriterien von Motzer untersucht [286]. Das Gesamtüberleben war für Patienten, die mit Temsirolimus behandelt wurden, gegenüber IFN-α signifikant verlängert (median 10,9 Monate vs. 7,3 Monate). Der Kombinationsarm erbrachte keine Verlängerung des Überlebens, aber eine signifikant höhere Nebenwirkungsrate.
7.6 Therapie bei terminaler Niereninsuffizienz

<table>
<thead>
<tr>
<th>Nutzen/Schadensaspekte</th>
<th>Temsirolimus</th>
<th>Temsirolimus und INF</th>
<th>INF</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansprechraten (ORR=CR + PR)</td>
<td>8,6 %</td>
<td>8,1 %</td>
<td>4,8 %</td>
<td>n. s.</td>
</tr>
<tr>
<td>Clinical Benefit Rate (CR + PR + SD)</td>
<td>32,1 %</td>
<td>28,1 %</td>
<td>15,5 %</td>
<td>-</td>
</tr>
<tr>
<td>Progressionsfreies Überleben</td>
<td>5,5 Monate</td>
<td>4,7 Monate</td>
<td>3,1 Monate</td>
<td>-</td>
</tr>
<tr>
<td>Gesamtüberleben</td>
<td>10,9 Monate</td>
<td>8,4 Monate</td>
<td>7,3 Monate</td>
<td>0,008</td>
</tr>
<tr>
<td>Abbruchraten*:</td>
<td>7 %</td>
<td>20 %</td>
<td>14 %</td>
<td>-</td>
</tr>
<tr>
<td>Dosisreduktion:</td>
<td>23 %</td>
<td>NR</td>
<td>39 %</td>
<td>-</td>
</tr>
<tr>
<td>Nebenwirkungen Grad 3 +4 :</td>
<td>67 %</td>
<td>87 %</td>
<td>78 %</td>
<td>-</td>
</tr>
</tbody>
</table>

*AE-assoziiert, n. s.: nicht signifikant

ORR: objective response rate; CR: complete regression; PR: partial regression; SD: stable disease; NR: no remission

7.6. Therapie bei terminaler Niereninsuffizienz

7.10. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bei Patienten mit terminaler Niereninsuffizienz und/oder Hämodialyse kann eine Systemtherapie basierend auf TKI und mTOR-Inhibitoren durchgeführt werden.</td>
</tr>
</tbody>
</table>

Level of Evidence: 4

Literatur: [334-337]

Konsens

Hintergrund

7.7 Sequenztherapie des klarzelligen Nierenzellkarzinoms

7.11. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Eine sequenzielle Therapie sollte nach Versagen oder Unverträglichkeit einer vorangegangenen Therapie angestrebt werden. Eine spezifische Sequenz von Substanzen kann nicht empfohlen werden.</td>
</tr>
</tbody>
</table>

Level of Evidence

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1++</td>
<td>Literatur: [324, 325, 338]</td>
</tr>
</tbody>
</table>

Konsens

Hintergrund

Sunitinib-Everolimus oder Everolimus-Sunitinib

RECORD-3 untersuchte den Stellenwert der spezifischen Sequenz von Everolimus und Sunitinib in Erst- bzw. Zweitlinie [325]. Der primäre Endpunkt ist das PFS in der Erstlinie mit Nicht-Unterlegenheitsdesign. 238 Patienten erhielten Everolimus und 233 Sunitinib in der Erstlinie. Das Studienziel der Nichtunterlegenheit wurde nicht erreicht, das PFS betrug für Everolimus 7,9 Monaten und 10,7 Monaten für Sunitinib (HR 1,43 [CI 95 % 1,15-1,77]). Auch das objektivierbare Ansprechen war unter Everolimus mit 8 % Sunitinib mit 26,6 % unterlegen. Eine abschließende Überlebensanalyse liegt lediglich in Form einer Zwischenanalyse vor und favorisiert die Sequenz Sunitinib gefolgt von Everolimus (32,0 vs. 22,4 Monate; HR 1,24 [CI 95 % 0,94-1,64]).

Inzidenzen von unerwünschten Ereignissen variieren zwischen den Substanzen und Therapielinien. Dosisreduktionen für Everolimus in der Erst- oder Zweitlinie wurden in 30 % bzw. 19 % notwendig, wohingegen unter Sunitinib 51 % und 37 % entsprechende Adaptionen benötigten.

Sorafenib-Sunitinib oder Sunitinib-Sorafenib

Die SWITCH1-Studie untersuchte den Einsatz von Sorafenib und Sunitinib in der Erst- und Zweitlinientherapie [338]. 182 Patienten wurden zufällig für Sorafenib (SO-SU) und 183 für Sunitinib (SU-SO) in der Erstlinie randomisiert. Davon erhielten 103 bzw. 76 Patienten eine Zweitlinie innerhalb der Studie mit dem jeweils anderen Präparat. Der primäre Endpunkt der Studie war eine Überlegenheit für das kumulative PFS für die Sequenz SO-SU, die mit 12,5 und 14,9 Monaten der beiden Arme keine Überlegenheit für SO-SU zeigen konnte (HR 1,01 [CI 95 % < 1,27]; p=0,54). Das objektivierbare Ansprechen war in der Erstlinie mit 31 % für Sorafenib und 29 % für Sunitinib ähnlich. Das OS war mit 31,5 (SO-SU) und 30,2 (SU-SO) Monaten nicht überlegen (p=0,49).
Dosisreduktionen wurden unter Sorafenib in 35,7 % und unter Sunitinib in 35,5 % in der Erstlinie notwendig. In der Zweitlinie war für Sorafenib eine Dosisreduktion in 46,1 % und für Sunitinib in 23,3 % notwendig.

Drittlinie mit Dovitinib oder Sorafenib

Die GOLD-Studie vergleicht den Einsatz des experimentellen Inhibitors Dovitinib mit Sorafenib nach Versagen eines TKI und eines mTOR-Inhibitors [324]. 92 % erhielten die Sequenz eines TKI gefolgt von einem mTOR-Inhibitor. 284 Patienten erhielten Dovitinib und 286 Sorafenib in der Drittlinie. Der primäre Endpunkt der Studie wurde nicht erreicht (33 % Verbesserung des PFS). Dovitinib und Sorafenib erzielten ein PFS von 3,7 bzw. 3,6 Monaten (HR 0,86 [CI 95 % 0,72-1,04]; p=0,063). Auch das OS fiel mit 11,1 und 11,0 Monaten ähnlich aus (HR 0,96 [CI 95 % 0,75-1,22]). Verglichen mit dem historischen PFS für Patienten aus der Placebo-Kontrolle prospektiver Studien ergibt sich mit den Effektivitätsdaten der GOLD-Studie eine Verbesserung des PFS. Diese Daten legen damit die Therapiefortsetzung in der Drittlinie nahe.

Je nach Studie findet sich eine gewisse Varianz im PFS der mit Placebo behandelten Patienten wieder. So betrug in der VEGF105192-Studie das PFS der mit Placebo behandelten Patienten 2,8 Monate (unvorbehandelt) bzw. 4,2 Monate nach Zytokinversagen, wohingegen die Target-Studie nach Zytokinversagen ein PFS von 2,8 Monaten aufwies [321, 322]. Da die heutige Patientenpopulation vorwiegend mit TKI vorbehandelt ist, bildet die Placebo-Gruppe der RECORD-I-Studie das aktuelle klinische Szenario besser ab. In der Studie betrug das PFS nach Versagen von mindestens einem TKI lediglich 1,9 Monaten und unterstreicht damit die Aggressivität der Erkrankung nach TKI-Versagen [323]. Basierend auf diesen Effektivitätsdaten, halten wir die Fortführung der Therapie in der dritten Linie für gerechtfertigt.

7.8. Kombinationstherapie des klarzelligen Nierenzellkarzinoms

7.12. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Eine Kombinationstherapie mit zwei zielgerichteten Therapien soll derzeit nur innerhalb von klinischen Studien durchgeführt werden.</td>
</tr>
</tbody>
</table>

Level of Evidence

| 2+ | Literatur: [339-344] |
| | Starker Konsens |

Hintergrund

Die Kombination divergenter Wirkmechanismen kann sinnvoll sein, um Resistenzmechanismen zu überwinden oder um bei synergistischen Effekten eine höhere Wirksamkeit als in der Monotherapie zu erzielen. Prinzipiell sollten Kombinationen nur Patienten in zumindest gutem Allgemeinzustand angeboten werden mit Fokus auf die Erstlinienbehandlung, da in dieser Therapiephase der Zustand des Patienten noch recht gut ist. Hierbei ist auf eine ausreichende Wirksamkeit bei tolerabler Toxizität zu achten. Einzige bisher zugelassene Kombination ist wie bereits in Kapitel 5.5. erwähnt Be-
7.8 Kombinationstherapie des klarzelligen Nierenzellkarzinoms

vacizumab/Interferon-α in der Erstlinienbehandlung bei Patienten mit gutem oder intermediärem Prognosewert [287, 288].

7.8.1. Kombinationen mit Zytokinen

7.8.2. Kombinationen mit TKI

7.8.3. Kombinationen mit Bevacizumab

7.8.4. **Kombinationen mit mTOR-Inhibitoren**

Temsirolimus wurde, wie in Kapitel 5.5 bereits beschrieben, in einer dreiarmpigen randomisierten Phase-III-Studie bei Patienten mit intermediärer und ungünstiger Prognose nach Motzer in Kombination mit Interferon-α oder allein gegen Interferon-α geprüft mit Nichtüberlegenheit gegenüber Temsirolimus allein bezüglich der Effektivitätspunkte Remissionsrate, progressionsfreies und Gesamtüberleben [286]. Kombinationen mit Bevacizumab (Everolimus oder Temsirolimus) oder VEGFR-TKI wurden bereits in den Kapiteln 5.7.2 und 5.7.3 beschrieben. Aufgrund von Toxizitätsproblemen und fehlendem zusätzlichem klinischem Benefit scheint nur die Kombination Ti-vozanib/mTOR-Inhibitor eine gewisse Zukunft zu haben, jedoch wird die Substanz Ti-vozanib aufgrund einer gescheiterten Zulassungsstudie in der Erstlinientherapie beim fortgeschrittenen Nierenzellkarzinom nicht mehr weiterverfolgt [344, 348].

7.9. **Beginn, Dauer und Wechsel der systemischen Therapie beim metastasierten Nierenzellkarzinom**

<table>
<thead>
<tr>
<th>7.13.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Auswahl der systemischen Therapie sollte individuell anhand der zu erwartenden Effektivität, des Toxizitätsspektrums und der Komorbidität des Patienten erfolgen.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.14.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Bei tumorbedingter Symptomatik oder schlechter Prognose soll die Behandlung zeitnah beginnen.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.15.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Bei asymptomatischen Patienten mit günstiger oder intermediärer Prognose sollte die zielgerichtete Therapie erst bei nachgewiesenem Progress und fehlender lokaler Therapieoption eingeleitet werden.</td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.16.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Therapie sollte bis zum Progress oder Intoleranz bei adäquater supportiver Therapie erfolgen.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>
7.17.
Konsensbasierte Empfehlung

EK
Ein Wechsel der laufenden Therapie sollte erst nach dokumentiertem deutlichem Progress bei fehlender lokaler Therapiemöglichkeit oder nicht tolerablen Nebenwirkungen erfolgen.

Konsens

7.18.
Konsensbasierte Empfehlung

EK
Unter einer laufenden Systemtherapie sollte eine Schnittbildgebung alle 6 bis 12 Wochen durchgeführt werden.

Starker Konsens

Hintergrund 7.14
Die Auswahl der medikamentösen Therapie bei unbehandelten Patienten erfolgt vorrangig nach dem Risikoprofil. Im Fall von Behandlungsalternativen spielt das unterschiedliche Verträglichkeitsprofil in der Therapieauswahl durchaus eine Rolle. Basierend auf der Behandlungssituation sowie den Komorbiditäten und Präferenzen des Patienten ist eine möglichst individuelle Therapieauswahl zu treffen.

Hintergrund 7.15

Hintergrund 7.16

Wegen des raschen Fortschreitens der Erkrankung bei Patienten mit ungünstigem Risiko oder symptomatischen Patienten, kommen damit nur Patienten mit einer günstigen oder intermediären Prognose für eine Verlaufs kontrolle infrage. Vor dem Beginn einer medikamentösen Therapie sollte deshalb die Tumorprogression nachgewiesen werden.
7.9 Beginn, Dauer und Wechsel der systemischen Therapie beim metastasierten Nierenzellkarzinom

Hintergrund 7.17

Die Toxizitätsraten der zur Verfügung stehenden medikamentösen Therapien sind enorm. Unter Pazopanib oder Sunitinib finden sich unerwünschte Ereignisse in 100 % bzw. 99 %, unter Bevacizumab/IFN sind es 97 % [287, 302]. Insofern kommt der Bedeutung der Supportivbehandlung im Therapiemanagement eine bedeutende Rolle zu, um damit die Fortsetzung der Behandlung zu ermöglichen.

Hintergrund 7.18

Unter der medikamentösen Behandlung des Nierenzellkarzinoms kann es zu diskon-kordantem Ansprechen kommen. Dieses basiert auf der intratumoralen genetischen Heterogenität des Nierenzellkarzinoms [351]. Basierend auf diesem Modell kann es unter der Therapie zur klonalen Expansion kommen, was zu einem diskonkordanten Tu-moransprechen führen kann. In solchen Fällen kann eine Lokaltherapie sinnvoll sein. Prospektive Daten zur klinischen Relevanz der Lokaltherapie bei isoliertem Progress liegen jedoch nicht vor.

7.9.1. Kontrollbildgebung unter Therapie

7.9.2. Therapiefortsetzung bei stabilen Patienten

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Evidenzbasiertes Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+</td>
<td>Der Einfluss einer Therapiepause auf die Prognose kann derzeit nicht beurteilt werden.</td>
</tr>
</tbody>
</table>

Literatur: [330, 352-354]

Konsens
7.20. Konsensbasiertes Statement

<table>
<thead>
<tr>
<th>Konsensbasiertes Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK Wenn der Patient eine Therapiepause wünscht, soll er über die Konsequenzen und die Notwendigkeit einer engmaschigen Überwachung aufgeklärt werden.</td>
</tr>
</tbody>
</table>

Hintergrund

Aufgrund der insgesamt als palliativ zu bewertenden Therapiesituation (limitierte Zahl von kompletten Remissionen) und der relevanten und in der Dauertherapie die Lebensqualität erheblich alternden Nebenwirkungen der Targettherapie erscheint die Frage nach Therapiepausen für stabile Patienten als sehr wesentlich.

Für andere Tumorentitäten gibt es inzwischen durchaus relevante Daten zu „Drug-free Interval“-Strategien (DFIS), die bei erheblicher Verbesserung der Lebensqualität eine nicht signifikante Verschlechterung des OS zeigen konnten.

Patienten zeigten bei Sorafenib Re-Exposition ein Ansprechen mit einem medianen PFS von 24 Monaten.

Vor diesem Hintergrund ist in Großbritannien die STAR-Studie gestartet worden, die zukünftig Daten zur DFIS unter Sunitinib unter Beachtung von OS, Lebensqualität und QALY liefern wird. Insgesamt sollen 1000 Patienten randomisiert werden. Nach Erreichen der maximalen Response (RECIST) und mindestens 4 Serien Sunitinib erfolgt in Studienarm B eine Therapiepause bis zur radiologisch nachgewiesenen Progression. Diese Therapiepausen können nach weiteren 4 Zyklen Sunitinib und Ansprechen wiederholt werden.
8. Lokale Metastasentherapie

In diesem Kapitel werden lokale Verfahren beschrieben, die das Ziel verfolgen, auch bei schon eingetretener limitierter Metastasierung die Metastasen oder den Primärtumor lokal-kurativ oder lokal-kontrollierend zu behandeln.

8.1. Allgemeines Vorgehen

<table>
<thead>
<tr>
<th>8.1. Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
</tr>
<tr>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.2. Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
</tr>
<tr>
<td>Level of Evidence</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Konsens</td>
</tr>
</tbody>
</table>

Hintergrund

Bedeutung der Primärtumorentfernung

In historischen Fallsammlungen finden sich immer wieder Berichte von spontanen Remissionen von Nierenzellkarzinommetastasen nach Entfernung des Primärtumors, insbesondere für Patienten mit Lungenmetastasen wird eine spontane Remissionsrate von 0,3-4 % angegeben [359, 360]. Auch wenn diese historischen Beobachtungen heutzutage nur schwer nachzuvollziehen sind, stellt sich die Frage der Primärtumorentfernung als sog. zytoreduktive Nephrektomie in der primär metastasierten Situation.

Für die Resektion des Primarius mit einer nachfolgenden medikamentösen Therapie sind aus der Zytokinära zwei unabhängige prospektive randomisierte Studien, die ebenfalls in einer Meta-Analyse untersucht wurden, publiziert. Bei beiden Studien erfolgte die Analyse einer Interferon-α(IFN-α)-Therapie im Anschluss an eine Resektion des Primärtumors vs. eine alleinige Interferon-α-Therapie in Bezug auf eine Verlängerung des Gesamtüberlebens.

In der Studie von Flanigan et al. (SWOG8949) wurden 246 Patienten mit einem histologisch gesicherten Nierenzellkarzinom 1 : 1 in die Arme Nephrektomie (Nx) + Interferon-α (3x 5 Mio IU/m², n=121) und alleinige Interferon-α-Gabe (n=120) randomisiert. 5
Patienten wurden aufgrund einer nicht konklusiven Histologie für die spätere Analyse ausgeschlossen. Eine Unterscheidung der histologischen Subtypen erfolgte nicht. Das mediane Gesamtüberleben im Nx + IFN-α-Arm war signifikant verlängert (11,1 vs. 8,1 Monate; Nx + IFN-α vs. IFN-α). Prognostisch günstig für ein signifikant verlängertes Gesamtüberleben im Behandlungsarm Nx + IFN-α war das Vorhandensein von alleinigen Lungenmetastasen vs. andere Organmetastasen (14,3 vs. 10,2 Monate) und ein Performance Status von ECOG 0 vs. ECOG 1 (17,4 vs. 6,9 Monate) [300].

In der Studie von Mickisch et al. (EORTC30947) wurden 85 Patienten mit einem histologisch gesicherten Nierenzellkarzinom 1 : 1 in die Arme Nephrektomie (Nx) + Interferon-α (n=42) und alleinige Interferon-α-Gabe (n=43) randomisiert. Die objektive Ansprechrate (radiologisch komplettes und partielles Ansprechen) unterschied sich nicht zwischen den Behandlungsarmen (19 % [8 von 42] vs. 12 % [5 von 43]; p=0,38; Nx + IFN-α vs. IFN-α). Die Hazard Ratio zeigte ein verlängertes Gesamtüberleben (HR 0,54) und ein verlängertes progressionsfreies Überleben (HR 0,60) für den Behandlungsarm Nx + IFN-α an. Das geschätzte mediane Überleben verbesserte sich für den Nx + IFN-α-Arm von 7 auf 17 Monate (p=0,03) [301].

Die Meta-Analyse beider Studien, die ein identisches Studiendesign aufwiesen, ergab ein medianes Gesamtüberleben von 13,6 Monaten vs. 7,8 Monate (HR 0,69 [95 % CI 0,55-0,87]; p=0,002) für den Nx + IFN-α-Arm. In dieser Analyse war der Performance Status prognostisch signifikant (ECOG 0 vs. ECOG 1, p=0,0001), die Lokalisation der Metastasen und die Messbarkeit der Metastasen nicht [356].

Da die Zytokintherapie heute selten in der Erstlinienbehandlung metastasierter Patienten eingesetzt wird, stellt sich die Frage, ob die zytoreduktive Nephrektomie auch für Patienten zu empfehlen ist, die eine TKI- oder mTOR-basierte Therapie erhalten. Prospektive Studienergebnisse zur Beantwortung dieser Fragestellung fehlen. Derzeit sind zwei prospektive Studien (CARMENA und SURTIME) aktiv, die dieser Fragestellung nachgehen.

Die vorhandenen Ergebnisse für eine Zytoreduktion durch die Entfernung des Primarius stammen daher überwiegend aus retrospektiven Untersuchungen bzw. auch aus prospektiven Fallserien. In diesem Zusammenhang ist wichtig, dass die Ergebnisse der Phase-III-Studien der zielgerichteten Therapien, die heute in der Erstlinienbehandlung eingesetzt werden, bei der überwiegenden Mehrzahl der behandelten Patienten eine Primärtumorentfernung durchgeführt wurde (90-100 %) [357]. Die in diesen Studien behandelten Patienten hatten jedoch nicht nur synchrone Metastasen, so dass bei einem Teil der Patienten auch eine frühere kurativ intendierte Entfernung des Primarius stattfand mit einer späteren metachronen Metastasierung zum Zeitpunkt des Studieneinschlusses. Für das Medikament Sunitinib liegen Daten aus dem erweiterten Zulasungsprogramm vor (Expanded Access Trial), die einen leichten, jedoch statistisch nicht signifikanten Vorteil für Patienten mit zytoreduktiver Nephrektomie im Vergleich zu Patienten ohne Nephrektomie zeigen [358].

Ein weiterer Gesichtspunkt, der bei der Entscheidung für eine zytoreduktive Nephrektomie berücksichtigt werden sollte, ist das geringere Ansprechen des Primarius auf eine zielgerichtete Therapie im Vergleich zum Ansprechen der Metastasen auf eine Sunitinib-, Sorafenib- oder Bevacizumab-Behandlung, was Ergebnisse aus neoadjuvanten Behandlungsstudien aufzeigen [361-364].

Ebenfalls sind bei der Entscheidung zur zytoreduktiven Nephrektomie individuelle Patientenfaktoren wie der allgemeine Gesundheitszustand, die Symptomatik des Tumors (Makrohämaturie, Schmerzen) sowie paraneoplastische Syndrome zu berücksichtigen.
Weitere Faktoren, die in diese Therapieentscheidung mit einbezogen werden sollten, sind das Ausmaß der Metastasen, vorhandene Begleiterkrankungen, Komorbiditäten, die das intra- und perioperative Risiko steigern könnten und eine vorbestehende Einschränkung der Nierenfunktion.

8.2. Stellenwert lokaler Therapien in Abhängigkeit von Zeitpunkt und Lokalisation der Metastasierung

8.3. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Beikation</th>
<th>Level of Evidence</th>
<th>Literatur:</th>
</tr>
</thead>
</table>

Konsens

8.4. Sondervotum von DEGRO und BVDST

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Beimenvon</th>
<th>Level of Evidence</th>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>metachroner Metastasierung sollten solitäre Befunde lokal therapiert werden.</td>
<td>3</td>
<td>Für operatives Vorgehen [365-367] Für Radiotherapie: [69, 368-374]</td>
</tr>
</tbody>
</table>

Konsens

8.5. Konsensbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlung</th>
<th>Beimenvon</th>
<th>Literatur:</th>
</tr>
</thead>
</table>

Konsens
8.2 Stellenwert lokaler Therapien in Abhängigkeit von Zeitpunkt und Lokalisation der Metastasierung

8.6. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Treten metachron mehrere Metastasen in nur einem Organsystem auf, sollte eine lokale Behandlung geprüft werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>B</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>3</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Für operatives Vorgehen: [365-367] Für Radiotherapie: [69, 368-374]</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

8.7. Evidenzbasiertes Statement

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Der Stellenwert der lokalen Therapie bei synchroner oder metachroner Metastasierung in mehreren Organsystemen ist unklar.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Evidence</td>
<td>3</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Für operatives Vorgehen: [375] Für Radiotherapie: [69, 374]</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Konsens

Hintergrund

Stellenwert der Metastasenchirurgie und der stereotaktischen Radiotherapie/ Radiochirurgie

Zur Metastasenresektion gibt es 3 größere retrospektive Serien aus den 90er Jahren, also aus der Zeit vor Einführung der Target-spezifischen Therapien. Kierney et al. berichteten über 41 Patienten mit metachroner Metastasierung im Median 27 Monate nach kurativer Nephrektomie. Es handelte sich in 20 Fällen um Lungenmetastasen, 10-mal um Weichteilmetastasen intraabdominell oder mediastinal, um 7 Hirnmetastasen, 3 Schilddrüsenmetastasen und eine Hautmetastase. Eine komplette Resektion gelang in 36 der 41 Patienten (88 %), wobei 23 der 36 Patienten einzig eine solitäre Metastase aufwiesen. 50 % der Patienten erhielten adjuvante Therapien. Das mediane Überleben betrug 3,4 Jahre. Das 1-, 3- und 5-Jahres-Überleben lag bei 77 %, 59 % und 31 %. Einziger prognostisch ungünstiger Faktor war ein schlechterer Differenzierungsgrad der Metastasen gegenüber dem Primärtumor. Das Intervall bis zum Auftreten der Metastasen und die Anzahl der Metastasen waren prognostisch nicht von Bedeutung [365].

Kavolius et al. berichteten über 278 Patienten mit Rezidiv nach kurativer Nephrektomie. Bei 141 Patienten gelang eine komplette, bei 70 eine nur inkomplette Metastasen-
resektion. 67 Patienten unterzogen sich nicht-operativen Maßnahmen. Das 5-Jahresüberleben in diesen 3 Gruppen betrug 44 %, 14 % und 11 %. Prognostisch signifikant für ein langes Überleben waren ein Intervall bis zum Auftreten der Metastasen > 12 Monate, der Nachweis einer solitären Metastase und ein Alter < 60 Jahre. Die Überlebensraten nach wiederholter kompletter Metastasenresektion waren nicht schlechter als nach primärer Operation [366].

In einer retrospektiven Analyse aus dem Jahr 2007 verglichen Kwak et al. 21 Patienten, bei denen eine Metastasenresektion erfolgte, mit 41 Patienten, die diese ablehnten, wobei auch keiner der Patienten eine systemische Therapie erhielt. Alle Patienten waren nephrektomiert. Das mediane Überleben betrug 36,5 (4-182) vs. 8,4 (1-64) Monate (p < 0,001). Die 1-, 3- und 5-Jahresüberlebensraten wurden kalkuliert auf 71,4 %; 47,6 % und 9,8 % vs. 34,1 %, 9,8 %; und 2,4 % (p < 0,001). Bei Stratifizierung der Patienten war das Überleben schlechter in der nicht-operierten Gruppe, bei jungen Patienten, bei schlechtem Performance-Status, bei kurzem Intervall bis zum Auftreten der Metastasen und bei solitären Befunden. In der Multivarianzanalyse erwies sich nur die Metastasenresektion als unabhängiger prädiktiver Faktor (p=0,014) [376].

Erweist sich in den meisten Analysen das Vorhandensein einer solitären Metastase als günstig und gut geeignet für die Resektion, ist der Stellenwert der Resektion bei Vorhandensein multipler Metastasen weniger klar. Hierzu publizierten Alt et al. Daten von 887 Patienten, alle nephrektomiert und im weiteren Verlauf mit multipler Metastasierung. Bei 125 (14 %) gelang eine komplette Resektion aller Metastasen. In dieser Gruppe betrug das mediane krankheitspezifische Überleben 4,8 Jahre im Vergleich zu 1,3 Jahren bei den übrigen Patienten (p < 0,001). Ebenso günstig fiel der Vergleich für das 5-Jahres-krankheitspezifische Überleben aus: 32,5 % vs. 12,4 % (p < 0,001). Der Vorteil für die komplette Resektion war unabhängig von der Metastasenlokalisation, obwohl die Ergebnisse für Lungenfiliae am besten waren. Die prädiktive Bedeutung einer kompletten Resektion war unabhängig von der Tatsache, ob es sich um metachrone oder synchrone Metastasen handelte [375].

Die gleichen günstigen prognostischen Faktoren (solitäre Läsionen, langes krankheitsfreies Intervall), die bei der Metastasektomie eine Rolle spielen, rechtfertigen abhängig von der Lokalisation und der Resektabilität der Metastasen als Alternative eine hochdosierte Radiotherapie mit dem Ziel einer lang anhaltenden Tumorkontrolle (Tabelle 21, S. 109 [69, 368-374]). Dazu beschreiben de Meerleer et al. in einer Übersichtsarbeit die Effektivität von stereotaktischen/radiochirurgischen Behandlungsop tionen bei Nierenzellkarzinomen mit geringer Metastasenlast (solitäre bis Oligometastasierung). Als Erfolgsparameter der Behandlung wird die lokale Kontrolle entspre-
8.2 Stellenwert lokaler Therapien in Abhängigkeit von Zeitpunkt und Lokalisation der Metastasierung

Wersäll et al. zeigten in der größten Arbeit zur Behandlung von 50 oligometastasierten Nierenzellkarzinompatienten mit 162 Metastasen (117 Lungenmetastasen, 20 Nierengefäßmetastasen, 6 Nebennierenmetastasen, 5 Thoraxwandmetastasen, 4 Knochenmetastasen, 2 Lebermetastasen, 1 Pankreasmetastase sowie 7 weitere Manifestationen) ebenso eine hohe lokale Kontrollrate mit 98 %. Es wurden 5 x 5 Gy bis 2 x 16 Gy in Abhängigkeit von der Lokalisation gegeben. 15/50 Patienten erhielten eine systemische Therapie vor der Metastasenbehandlung. Das mediane Überleben betrug 37 Monate. Höhergradige Toxizität trat bei 12/50 Patienten auf. Führend waren dabei Pneumonitis mit Husten/Dyspnoe, die Steroide erforderlich machte, und vorübergehende lokale Haut-/Schmerzreaktionen die symptomatisch behandelt wurden [368].

Die gleiche Autorenguppe (Svedman et al.) führte eine prospektive Phase-II-Studie mit 30 oligometastasierten Nierenzellkarzinompatienten mit 90 Metastasen durch. Die meisten Läsionen lagen in Lunge und im Mediastinum (63/90). Die Dosierungen reichten von 5 x 5 Gy bis 3 x 15 Gy. Die lokale Kontrollrate lag bei 98 % nach RECIST. Jede 5. Läsion war komplett regredient. Das mediane Überleben betrug 32 Monate. [369].

Teh et al. behandelten 14 oligometastasierte Nierenzellkarzinompatienten mit 23 Läsionen (Orbita, HNO-Bereich, Lunge, Mediastinum, Knochen und Bauchwand) mit 24-40 Gy in 3-6 Fraktionen. Alle Patienten waren deutlich vorbehandelt mit Interleukin 2, Interferon, Sorafenib, Sunitinib oder in klinischen Studien mit neuen systemisch wirksamen Medikamenten. Fast alle Patienten (93 %) berichteten eine Verbesserung der Schmerzsituation und die lokale Kontrolle betrug 87 % nach einem Jahr entsprechend den RECIST-Kriterien. Es trat keine höhergradige Toxizität auf [370].

Ranck et al. erreichten eine vergleichbare hohe locale Kontrolle nach RECIST (91 %) bei 18 oligometastasierten Nierenzellkarzinompatienten mit 39 Metastasen (11 Knochenmetastasen, 17 nodale Metastasen, 4 Lungenmetastasen, 2 Lebermetastasen und 5 weitere Lokalisationen) nach körperstereotaktischer Bestrahlung (Dosisskalationsprotokoll mit 3x 8-14 Gy oder 10x 4-5 Gy). Nach 2 Jahren lag das Gesamtüberleben bei 85 %. Bei Patienten, bei denen alle Metastasen lokal behandelt wurden, lag das Gesamtüberleben bei 100 %. Es trat keine höhergradige Toxizität auf [373].

Tabelle 21: Studien zur extrakraniellen Oligometastasierung beim Nierenzellkarzinom nach de Meerleer et al. [374]

<table>
<thead>
<tr>
<th>Autoren</th>
<th>Design/ Patienten [n]/ Läsionen [n]</th>
<th>Lokalisation</th>
<th>Nachsorge (Mon.)</th>
<th>Therapie</th>
<th>Lokale Kontrolle</th>
<th>Nebenwirkung [n]</th>
<th>G3</th>
<th>G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wersäll et al., 2005 [368]</td>
<td>retrospektiv/ 50/ 162</td>
<td>Lunge, Lymph-knoten, Niere, Nebenniere, Leber, Milz, Knochen, Thoraxwand, Pankeas</td>
<td>37</td>
<td>4x 8-10 Gy, 2-3x 15 Gy</td>
<td>90 %</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svedman et al., 2006 [369]</td>
<td>prospektiv/ 30/ 90</td>
<td>Lunge, Lymph-knoten, Nebenniere, Milz, Thorax-wand, Leber</td>
<td>52</td>
<td>5x 5-6 Gy, 4x 7-10 Gy, 2-3x 15 Gy</td>
<td>98 %</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Teh et al, 2007 [370]</td>
<td>retrospektiv/ 14/ 23</td>
<td>Lunge, Lymph-knoten, Knochen, Bauchwand</td>
<td>9</td>
<td>24-40 Gy in 3-6 Fraktionen</td>
<td>87 %</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Stinauer et al, 2011 [371]</td>
<td>retrospektiv/ 13/ 25</td>
<td>Lunge, Leber, Knochen</td>
<td>28</td>
<td>5x 8-10 Gy, 3x 14-20 Gy</td>
<td>88 %</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Zelefsky et al, 2012 [372]</td>
<td>retrospektiv/ 58/ 105</td>
<td>Lymphknoten, Knochen</td>
<td>12</td>
<td>1x 18-24 Gy, 3x 8-10 Gy, 5x 4-12 Gy, 24-37,5 Gy in > 5 Fraktionen</td>
<td>44 %</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ranck et al, 2013 [373]</td>
<td>retrospektiv/ 18/ 39</td>
<td>Lunge, Lymph-knoten, Niere, Nebenniere, Leber, Knochen, Weichteil</td>
<td>16</td>
<td>3 x 8-16 Gy, 10 x 4-5 Gy</td>
<td>91 %</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Der unklare Stellenwert der lokalen Behandlung bei synchroner oder metachroner Metastasierung in mehreren Organsystemen bezieht sich mit Statement 8.5 ausdrücklich nur auf lokal-kurative Verfahren. Die Wertigkeit rein palliativer Verfahren wird in diesem Kapitel nicht behandelt, siehe dazu Kapitel 10.

Begründung des Sondervotums von DEGRO und BVDST (siehe Empfehlung 8.4.): (Streichung des 2. Satzes gegenüber 8.3.)

Dies ist auch für den Fall hervorzuheben, wenn eine Operation einer solitären Filiae z. B. wegen funktioneller Reserve oder Lokalisation (z. B. eloquentes Areal, Gefäßnähe etc.) nicht möglich ist. Sollte stattdessen eine Stereotaxie/Radiochirurgie durchführbar sein, wäre diese Methode die einzige verbleibende kurative Option, die dem Patienten nicht vorenthalten werden sollte.
8.3. **Vorgehen bei speziellen Metastasenlokalisatioen**

Während 20-30 % der Patienten mit einem Nierenzellkarzinom primär Metastasen aufweisen, entwickeln weitere 20-30 % solche im Verlauf. Die Lunge ist mit 60-70 % am häufigsten betroffen, gefolgt von regionären Lymphknoten (60-65 %), Knochen (39-40 %), Leber (19-40 %) und Gehirn (5-7 %).

8.3.1. Lungenmetastasen

<table>
<thead>
<tr>
<th>8.8.</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>B</td>
</tr>
<tr>
<td>Resektable Lungenmetastasen sollten wegen der häufigen lymphogenen Metastasierung mit einer systematischen Lymphknotendissektion reseziert werden.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>3</td>
</tr>
<tr>
<td>Literatur: [377, 378]</td>
<td></td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.9.</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>B</td>
</tr>
<tr>
<td>Die Lungenmetastasektomie sollte offen erfolgen mit der Möglichkeit der Lungenpalpation.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>3</td>
</tr>
<tr>
<td>Literatur: [379-381]</td>
<td></td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.10.</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>0</td>
</tr>
<tr>
<td>Nur bei kleinen, singulären, günstig gelegenen Lungenmetastasen oder zu diagnostischen Zwecken kann die VATS erfolgen.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>3</td>
</tr>
<tr>
<td>Literatur: [382]</td>
<td></td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>
8.3 Vorgehen bei speziellen Metastasenlokalisationen

8.11. Konsensbasierte Empfehlung

EK
Eine sekundäre Resektion von Lungenmetastasen nach zielgerichteter Systemtherapie kann erfolgen, wenn dann eine R0-Resektion zu erwarten ist.

Konsens

Hintergrund

Die Lunge stellt die erste Filterstation für Tumorzellaggregate dar, die aus einem Nierentumor abgeschwemmt werden. Lungenmetastasen haben selbst die Fähigkeit zur lymphogenen und hämatogenen Streuung auch nach reseziertem Nierenzellkarzinom. Die Unterbrechung der Disseminierungskaskade durch komplette Resektion von Lungenmetastasen erscheint vor diesem Hintergrund sinnvoll. Die Prognoseverbesserung durch komplette Metastasektomie und die Chance auf Heilung nach Entfernung alleiniger Lungenmetastasen konnte in retrospektiven Studien gezeigt werden. Alt et al. konnten an 887 Patienten mit metastasiertem Nierenzellkarzinom zeigen, dass 86 % der Patienten nach R0-Resektion aller Metastasen einen signifikanten Überlebensvorteil hatten (DSS [disease specific survival] und OS [overall survival] von 4,8 und 4,0 Jahren, 5-Jahres-DSS 49,4 %, verglichen mit 14 % bei nicht kompletter metastasektomierten Patienten (DSS und OS von 1,3 und 1,3 Jahren, 5-Jahres-DSS 13,9 %) [375]. Weiterhin war die Prognose nach kompletter Lungenmetastasektomie (5-Jahres-DSS 73,6 %) deutlich besser als nach kompletter Entfernung extrapulmonaler Metastasen (5-Jahres-DSS 32,5 %). Diese Ergebnisse unterstützen das Modell der „Lunge als erster Metastasenfilter“.

Voraussetzungen zur Metastasenresektion:

- Der Primärtumor sollte unter Kontrolle sein
- Weitere extrathorakale Metastasierung nach interdisziplinärer Absprache
- Die Metastasen müssen komplett resektabel sein
- Das allgemeine und funktionelle Operationsrisiko muss vertretbar sein

Operationsindikationen sind:

- Solitäre Metastasen: klassische Operationsindikation
- Multiple Metastasen: prinzipiell keine Kontraindikation, limitierender Faktor verbleibende Parenchymreserve
- Rezidivmetastase: erneute Metastasierung stellt per se keine Kontraindikation dar; im Verlauf sollte immer die Möglichkeit der erneuten Metastasenresektion geprüft werden, es gelten die Grundsätze der o. g. Voraussetzungen
- Erweiterte Resektionen: bei Brustwandbefall, endobronchialen Tumorwachstum

Chirurgische Technik

Lymphknotendissektion im Rahmen der Metastasenchirurgie

Eine mediastinale und hiläre Lymphknotenmetastasierung kann im Rahmen eines individuellen Heilungsversuchs mit vielversprechendem Langzeitüberleben reseziert werden [377, 378, 385, 387].

Tabelle 22: Retrospektive Studien zur Überlebensrate nach Lungenmetastasektomie

<table>
<thead>
<tr>
<th>Referenz</th>
<th>Jahr</th>
<th>Datenerkennung</th>
<th>N</th>
<th>5 (10)-J-OS</th>
<th>5 (10)-J-OS (R0)</th>
<th>Letalität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfannschmidt J [385]</td>
<td>2002</td>
<td>1985-1999</td>
<td>149</td>
<td>36,9 %</td>
<td>41,5 %</td>
<td>2,1 %</td>
</tr>
<tr>
<td>Murthy SC [391]</td>
<td>2005</td>
<td>1986-2001</td>
<td>92</td>
<td>31 %</td>
<td>42 %</td>
<td>0</td>
</tr>
<tr>
<td>Hoffmann HS [392]</td>
<td>2005</td>
<td>1975-2003</td>
<td>64</td>
<td>33,4 %</td>
<td>39,9</td>
<td>0 %</td>
</tr>
<tr>
<td>Kanzaki R [389]</td>
<td>2011</td>
<td>1973-2008</td>
<td>48</td>
<td>47 % (18 %)</td>
<td>50 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Meimarakis G [386]</td>
<td>2011</td>
<td>1986-2006</td>
<td>202</td>
<td>39 % (27 %)</td>
<td>45 % (31 %)</td>
<td>1/202</td>
</tr>
<tr>
<td>Kudelin N [387]</td>
<td>2013</td>
<td>1999-2009</td>
<td>116</td>
<td>49 % (21 %)</td>
<td>k. A.</td>
<td>0,9 %</td>
</tr>
</tbody>
</table>

k.A.=keine Angaben; 5(10)-J-OS=5 (bzw. 10) Jahres-Gesamtüberleben
Hintergrund Empfehlung 8.7
In einer retrospektiven Analyse mit 122 Patienten konnte ein Lymphknotenbefall sowohl in der univariaten als auch in der multivariaten Analyse als unabhängiger Prognosefaktor ermittelt werden. Das mediane Überleben ohne Lymphknotenbefall betrug 107 Monate, mit Befall 37 Monate (p=0,003). Die Länge des Überlebens hing im Weiteren von der Zeit des krankheitsfreien Intervalls ab (>/<= 12 Monate). Hier ergab sich ein medianes Überleben von 94 vs. 23 Monate (p < 0,0001). Daher sollte die Lymphadenektomie Bestandteil der Metastasenresektion sein, um ein akkurateres Staging und damit eine differenziertere weitere Therapieplanung zu ermöglichen [377].

Auch in der Arbeit von Winter et al. mit 110 Patienten bestätigte sich für Patienten mit einem hilären und/oder mediastinalen Lymphknotenbefall ein signifikant schlechteres Überleben (19 vs. 102 Monate, p < 0,001). In einer matched-pair-Analyse zeigte sich, dass die Lymphknotenresektion aber einen positiven Einfluss auf das Überleben hatte [378].

Hintergrund Empfehlung 8.8
Parsons et al. berichteten über eine retrospektive Auswertung von 34 ihrer Patienten, bei denen insgesamt 41 pulmonale Metastasenresektionen erfolgten. Präoperativ wurde ein Spiral-CT durchgeführt. Hiermit konnte die Detektionsrate der Metastasen gegenüber einem konventionellen CT verbessert werden. Die Operation erfolgte offen. Intraoperativ wurde die Lunge manuell durchpalpiert. Es sollte analysiert werden, ob durch die Palpation die Detektionsrate gegenüber dem Spiral-CT höher war. Es zeigte sich, dass durch die Palpation bei 9/41 Patienten (22 %) weitere Befunde entdeckt wurden, die im Spiral-CT nicht nachgewiesen worden waren. Mit diesem waren 69 von insgesamt 88 operativ entfernten Herden festgestellt worden. Somit lag die Sensitivität des Spiral-CTs nur bei 78 %, und es bestätigte sich, dass die intraoperative Palpation der Lunge notwendig ist [379].

Cerfolio et al. führten eine vergleichbare Untersuchung prospektiv durch. In diese Studie gingen 152 Patienten ein, davon hatten 19 Patienten Metastasen eines Nierenzellkarzinoms in der Lunge. Diese hatten im Vorfeld ein Spiral-CT, in den meisten Fällen in Form eines PET-CTs, erhalten. 51 intraoperativ entfernte Befunde waren in der präoperativen Bildgebung nicht sichtbar, konnten aber palpiert werden. 30 dieser Befunde (59 %) erwiesen sich histologisch als maligne [380].

Eckardt et al. publizierten Daten von 89 konsekutiven Patienten, bei denen radiologisch Lungenherde festgestellt worden waren. Die Patienten unterzogen sich einem Video-assistierten thorakalen Eingriff (VATS) mit digital geführter Palpation der Lunge. Anschließend erfolgte durch ein zweites Team eine offene Thorakotomie ebenfalls mit intraoperativer Durch palpation der Lunge. Im CT hatte man präoperativ 140 Befunde gesehen. Bei der VATS konnten 122 Befunde (87 %) palpiert werden. Bei der offenen Operation wurden 189 Befunde palpatorisch gefunden und entfernt, so dass dies 67 Herde mehr waren als mittels der digitalen Palpation im Rahmen der VATS [381].

Hintergrund Empfehlung 8.9
Greenwood et al. führten eine systematische Literatursuche zur Frage durch, ob eine Thorakotomie gegenüber einem thorakoskopischen Vorgehen (VATS) zur Resektion von Lungenmetastasen Vorteile bringt. Die Analyse konnte zeigen, dass bei der VATS die Patienten eine kürzere Zeit ihre Drainage behielten, weniger Komplikationen aufwiesen und schneller das Krankenhaus verlassen konnten. Einen Einfluss auf das Überleben hatte der gewählte Zugangsweg nicht [382]. Die Autoren kommen allerdings zu
dem Schluss, dass den ausgewerteten retrospektiven Fallserien ein erheblicher Selektions-Bias zugrunde liegt, der eine Interpretation für das eine oder andere Verfahren nicht zulässt. Beispielsweise wurden subpleurale Metastasen per VATS reseziert und intermediäre und zentrale Metastasen offen entfernt und dann die Zugangswege mit ihrem prognostischen Einfluss verglichen. Nachgewiesen wurde in der offen Metastasektomie zudem ein ca. doppelt so großer Sicherheitsabstand zwischen Metastase und Klammerahltre (8 vs. 4 mm) wie nach VATS-Resektionen.

Stereotaktische Behandlung von Lungenmetastasen

Die größte Arbeit zur stereotaktischen Behandlung von Lungenmetastasen (n=117) wurde von Wersäll et al. publiziert. Die lokale Kontrollrate betrug mindestens 92 % nach 5× 5 Gy bis 2× 16 Gy in Abhängigkeit von der Lokalisation. 8 % der Patienten waren aus verschiedenen Gründen nicht auswertbar, so dass sie als lokales Versagen gerechnet wurden (daher 92 und nicht 100 % lokale Kontrolle) [368]. Weitere Publikationen, welche Lungenmetastasen enthielten und welche die hohen Ansprechraten bestätigten, sind in 8.2 bereits erwähnt.

Folglich zeigt sich auch in diesem Organsystem die Wirksamkeit lokal-ablativer Strahlendosen. Generell ist im Falle einer nicht ausreichenden funktionellen Lungenreserve oder medizinisch-internistischer Inoperabilität die hochdosierte Körperstereotaxie ein nicht-invasives Verfahren, das eine lokale Tumorkontrolle zwischen 44 % und 90 % und damit einen kurativen Therapieansatz ermöglicht. Die gleichen günstigen prognostischen Faktoren (solitäre Läsionen, langes krankheitsfreies Intervall), die bei der Metastasektomie eine Rolle spielen, rechtfertigen daher die hochdosierte Radiotherapie [69, 368-371, 374].
8.3.2. Knochenmetastasen

Knochenmetastasen stellen nach den Lungenmetastasen die zweithäufigste Metastasenlokalisation beim Nierenzellkarzinom dar. Anlass zu lokaltherapeutischen Maßnahmen ist die Symptomatik (Fraktur, drohende Fraktur, Querschnitt) wie auch eine kurative Option.

Kollender et al. operierten 56 Knochenfiliae bei 45 Patienten. Indikationen waren Frakturgefährdung, Schmerzen bzw. eine kurative Intention bei solitären Befunden. In 29 Fällen erfolgte eine Exzision im Gesunden (R0), in 25 Fällen eine marginale Resektion (ggf. R1), 2x eine Amputation. Es traten keine schwerwiegenden intra- oder postoperativen Komplikationen auf, insbesondere keine schweren Blutungen, Wundinfektionen, Nervenschädigungen oder thromboembolischen Ereignisse. Eine deutliche Verbesserung der Schmerzen konnte bei 91 % der Patienten erzielt werden, ein gutes funktionelles Ergebnis wiesen 89 % auf. Im Verlauf kam es zu 4 Lokalrezidiven (7 %). 22 Patienten (49 %) überlebten mehr als 2 Jahre, 17 Patienten (38 %) mehr als 3 Jahre. Wurde eine komplette Metastasenresektion erreicht, so überlebten 73 % mehr als 3 Jahre. Die Autoren empfehlen deshalb, wann immer möglich, die weitere Resektion der Läsionen [394].

In einer Auswertung von Szendroi et al. an 65 Patienten mit Knochenmetastasen erwiesen sich ein spätes Auftreten der Knochenmetastasen, solitäre Befunde mit niedrigem Fuhrmann-Grad sowie die komplettete Resektion als günstig für das Überleben. Nach kompletter Resektion eines solitären Befundes betrug das 5-Jahres-Überleben auch hier 35 %. Lagen multiple Metastasen vor oder konnte keine komplettete Resektion erzielt werden, überlebte kein Patient 5 Jahre [396].

beim Vergleich solitäre vs. multiple Metastasen im 5-Jahres-Überleben mit 38 % vs. 7 % (p < 0,001). Ein ebenfalls signifikanter Unterschied zeigte sich für Patienten, die nephrektomiert waren, mit einem 5-Jahres-Überleben von 22 % vs. 0 % (p < 0,001). Bei 8 Patienten mit Z. n. Nephrektomie und kompletter Resektion einer solitären Filia betrug das krankheitsspezifische Überleben 100 % [397].

Während Befunde an den großen Röhrenknochen im Vergleich einfach zu resezieren sind, stellt sich die Situation bei Befall des Achsenskeletts schwieriger dar. Ulmar et al. berichteten über die Operation von Wirbelsäulenmetastasen bei 37 Patienten. Die Indikation bestand aufgrund von Instabilität und spinaler Kompression oder therapie refraktärer Schmerzen. In 11 Fällen erfolgte die kombinierte Spondylodese mit Wirbelkörperersatz, in 26 Fällen die alleinige dorsale Instrumentierung. Hier zeigte sich eine hohe perioperative Komplikationsrate mit 59,5 %. Die 30-Tage-Letalität betrug 10,8 % (n=4). Todesursachen waren eine perioperative Tumormassenblutung, eine fulminante Lungenembolie, ein Herz-Kreislauß-Versagen und eine respiratorische Insuffizienz. Die Schmerzen konnten bei 24 Patienten (65 %), die neurologische Situation bei 7 Patienten (19 %) verbessert werden. 15 Patienten (40,5 %) wurden postoperativ mittels Immun-/Chemotherapie und/oder Bestrahlung nachbehandelt. Dies wirkte sich günstig auf das Überleben aus: mit Nachbehandlung im Median 17,2 Monate, ohne Nachbehandlung 3,8 Monate. Das mittlere Überleben für die Gesamgruppe betrug 13,6 Monate. Die postoperative Überlebenswahrscheinlichkeit nach 1, 5 und 10 Jahren betrug 35 %, 5 % und 0 %. In der univariaten Analyse zeigten sich der Karnofsky-Index, der Frankel-Score, der Broca-Index und das Intervall zwischen Primärdiagnose und Metastasierung als signifikant für das Überleben. In der multivariaten Analyse bestand für keinen der Faktoren mehr eine Bedeutung [399].

In der Publikation von Jackson et al. über 107 Operationen an der Wirbelsäule verringerte sich zwar der Schmerz mit 89 % und die neurologische Symptomatik verbesserte sich mit 65 % bei deutlich mehr Patienten, das mediane Überleben lag aber ebenfalls nur bei 12,3 Monaten [400].

Gelingt an der Wirbelsäule aber eine weite Resektion, was naturgemäß nur bei selektiven Indikationen erfolgen kann, so ist selbst dieser aufwendige und komplikationsreiche Eingriff prognostisch zu rechtfertigen [401].

In allen zitierten Studien wird klar, dass eine weite Resektion der Metastasen, soweit sie technisch machbar und den Patienten zumutbar ist, die Prognose erheblich verbessert und auch lokale Komplikationen durch ein Lokalrezidiv mit Versagen der gewählten Rekonstruktion/Osteosynthese vermeidet. Insofern sollte eine Knochenmetastasierung stets die Frage nach sich ziehen, ob ein resezierendes Vorgehen möglich wäre und inwieweit ggf. weitere Läsionen mit reseziert werden könnten. Nach einer operativen Entfernung von Knochenmetastasen sollte eine postoperative Radiotherapie wegen der möglichen Kontamination des Operationsgebietes und der häufig inkompletten Resektion folgen [402].

Die Bestrahlung von Wirbelsäulenmetastasen eines Nierenzellkarzinoms mittels körpertoreaktischer Technik (SBRT) wird seit einigen Jahren vermehrt eingesetzt, da das Therapieansprechen auf eine konventionelle Bestrahlungsdosis schlechter ist als bei
8.3 Vorgehen bei speziellen Metastasenlokalisationen

radiosensitiveren Histologien. Die Körpervorper stereotaxie erlaubt eine dosisintensivierte Be-
strahlung der Wirbelsäulennmetastasen bei gleichzeitiger Schonung des strah lensensib-
len Rückenmarks. Dies wird durch die Kombination der Hochpräzisions-

Bestrahlungstechniken intensitätsmodulierte Radiotherapie (IMRT) und bildgeführte Strahlentherapie (IGRT) erreicht. Die SBRT wird überwiegend dann angewendet, wenn

aufgrund einer oligometastasierten Erkrankung mit längerer Lebenserwartung eine
dauerhafte Schmerz- und/or lokale Tumorkontrolle angestrebt wird.

Gerszten et al. beschrieben eine retrospektive Serie von 48 Patienten, die mittels Ra-
diochirurgie an 60 Wirbelsäulennmetastasen behandelt wurden. Die mittlere Bestra-

lungsdosis betrug 20 Gy, die in einer einzigen Bestrahlungssitzung appliziert wurde.

Bei keinem der Patienten ist eine radiogene Myelopathie aufgetreten. Wenn die Patien-
ten aufgrund von Schmerzen mittels SBRT behandelt wurden, trat eine Schmerzlinder-
ungsbehandlung bei 89% der Patienten ein. Eine radiologisch verifizierte lokale Tumorkontrolle

wurde bei 7/8 Patienten erzielt, wenn die Behandlungsindikation eine radiologische

Tumorprogression gewesen war [403].

Nguyen et al. beschrieben eine retrospektive Behandlungsserie, in der bei 48 Patienten

insgesamt 55 Wirbelsäulennmetastasen mittels SBRT (1x 24 Gy, 3x 9 Gy, 6x 5 Gy) be-
handelt wurden. Nach einer medianen Nachbeobachtungszeit von 13 Monaten wurde

eine 1-Jahres-lokalen Tumorkontrolle bei 82% der Fälle beobachtet. Es wurden keine

Grad-3- bis Grad-5-Nebenwirkungen beschrieben [404].

Balagamwala et al. berichten über 47 Patienten und 88 Läsionen, die alle mit einer Ra-
diochirurgie (median 1x 15 Gy) behandelt wurden. Das mediane Überleben betrug 8,3

Monate und die mediane Zeit bis zu einem radiologischen Tumorprogress betrug 27

Monate. Lediglich ein Patient erlitt eine Grad-III-Nebenwirkung (Nausea). Nach 14 % der

Bestrahlungen entwickelte sich eine Kompressionsfraktur der metastatisch befallenen

und bestrahlten Wirbelkörper [405].

Thibault et al. erfassten ein prospektiv erhobenes Kollektiv von 37 Patienten und

71 Wirbelsäulennmetastasen. Die Patienten wurden mit median zwei Fraktionen und ei-

ner medianen Gesamtdosis von 24 Gy behandelt. Bei 15% der Behandlungen handelte

es sich um eine Re-Bestrahlung. Nach einer medianen Nachbeobachtungszeit von

12,3 Monaten betrug das 1-Jahresüberleben 64% und die lokale Tumorkontrolle 83%.

Eine oligometastatische Erkrankung war in der multivariaten Analyse mit längerem Ge-

samttüberleben assoziiert. Nach einem Jahr wurden bei 18% der Behandlungen Wirbel-
säulen-Kompressionsfrakturen beobachtet, dabei handelte es sich in 2/3 Fällen um ei-

eine Progression einer bereits vorher bestehenden Fraktur. Das Risiko für Kompressions-

frakturen hängt auch von Dosiswahl und Fraktionierungskonzept ab [406].

Sellin et al. untersuchten prognostische Faktoren nach SBRT von 37 Patienten, die

überwiegend mittels Radiochirurgie (1x 24 Gy) behandelt wurden. Das mediane Ge-

samttüberleben betrug 16,3 Monate. Ein lokales Rezidiv nach SBRT, das Intervall zwi-

scheng Primärdiagnose und Metastasierung, der Allgemeinzustand, das Vorhandensein

von neurologischen Ausfällen bedingt durch eine metastatische Rücken-

markskompression und die metastatische Gesamtsituation waren in der multivariaten

Analyse mit dem Gesamttüberleben korreliert [407].

Hunter et al. verglichen in einer retrospektiven Studie die Ergebnisse konventioneller

Bestrahlung (n=34) und von SBRT (n=76; Radiochirurgie mit 1x 8-16 Gy) bei schmerz-

haftigen Wirbelsäulennmetastasen. Eine Schmerzlinderung wurde nach konventioneller

Bestrahlung bei 68% und nach SBRT bei 62% der Patienten beschrieben (p > 0,05); ei-

eine vollständige Schmerzfreiheit wurde dagegen häufiger nach SBRT beobachtet: 33%
vs. 12 % (p=0,01). Die Dauer des Therapieansprechens betrug 1,7 Monate nach konventioneller Bestrahlung und 4,8 Monate nach SBRT (p=0,095) [408]. Zusammenfassend können in Analogie zu den Erfahrungen mit einer stereotaktischen Radiotherapie bei neurologischen Strukturen [409] extrakraniell ebenso hohe Bestrahlungsdosen verabreicht werden, die eine dauerhafte oder länger andauernde lokale Tumorkontrolle bei Nierenzellkarzinommetastasen ermöglichen [69, 372, 374, 403, 410-412]. Trotz der intensivierten Radiotherapie wurden aber im Laufe der Zeit noch in 12-15 % Rezidive beobachtet.

8.3.3. Hirnmetastasen

<table>
<thead>
<tr>
<th>8.12.</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>A</td>
</tr>
<tr>
<td>Bei Patienten mit Nierenzellkarzinom und intrakranieller Oligometastasierung soll die Indikation für eine stereotaktische Strahlentherapie geprüft werden.</td>
<td></td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>3</td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.13.</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
<td>A</td>
</tr>
<tr>
<td>Level of Evidence</td>
<td>3</td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Hintergrund
Prognosescores für die Beurteilung von Patienten mit Hirnmetastasen

Hirnmetastasen treten bei 5-10 % der Nierenzellkarzinompatienten auf mit einer 5-Jahres-Kumulativrate von 9.8 % [413]. Für die Behandlungsentscheidungen bei Patienten mit Hirnmetastasen existieren mehrere Prognosescores. Die wichtigsten RPA- und GPA-Index werden im Folgenden kurz vorgestellt:

Tabelle 23: RPA-Klassen und Prognoseschätzung nach Gaspar et al.

<table>
<thead>
<tr>
<th>RPA-Klasse</th>
<th>Karnofsky-Performance Index</th>
<th>Alter</th>
<th>Erkrankung</th>
<th>Medianes Überleben in Monaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70-100</td>
<td><65</td>
<td>Kontrollierter Primärtumor und keine extrakraniellen Metastasen</td>
<td>7.2</td>
</tr>
<tr>
<td>2</td>
<td>70-100</td>
<td>Entweder >65 Oder unkontrollierter Primärtumor</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><70</td>
<td>alle Altersklassen und Erkrankungsstadien</td>
<td>2.3</td>
<td></td>
</tr>
</tbody>
</table>

Da die RPA-Klassen bei Patienten mit multiplen Hirnmetastasen das Überleben potentiell überschätzen [418], wurde kürzlich ein weiterer Score definiert. Es handelt sich um den GPA (graded prognostic assessment) oder Sperduto-Index [419]. Der GPA-Index basiert auf 1960 Patientendaten (siehe Tabelle 24).

Tabelle 24: GPA-/Sperduto-Index für Summenscorebildung

<table>
<thead>
<tr>
<th>Kriterien</th>
<th>GPA-Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 Punkte</td>
</tr>
<tr>
<td>Alter</td>
<td>>60</td>
</tr>
<tr>
<td>Karnofsky-Performance Index</td>
<td><70</td>
</tr>
<tr>
<td>Hirnmetastasen</td>
<td>n>3</td>
</tr>
<tr>
<td>Extrakranielle Erkrankung</td>
<td>vorhanden</td>
</tr>
</tbody>
</table>

Die Summe der Punkte korrespondiert mit dem Überleben (siehe Tabelle 25).

Entsprechend des Sperduto-Scores sollten lokal-kurativ intendierte Methoden (Stereotaxie oder Chirurgie-/Radiotherapie) mit hoher lokaler Kontrolle spätestens ab 3 Punkten angeboten werden, da hier die Überlebenszeit länger als ein halbes Jahr ist und die lokale Kontrolle dann zunehmend an Bedeutung für Symptomfreiheit und Lebensqualität gewinnt. Auch bei niedrigerer Punktzahl sollte die lokal-kontrollierende Therapie diskutiert werden, wenn durch eine Radiochirurgie oder einen neurochirurgischen Eingriff eine Ganzhirnbestrahlung vermieden werden kann, wodurch bereits im kurzfristigen Verlauf von 3-4 Monaten eine Verbesserung der Lebensqualität oder Neurokognition erreicht wird.

Ganzhirnbestrahlung alleine versus Kombination von Neurochirurgie oder Radiochirurgie mit Ganzhirnbestrahlung

Tabelle 25: GPA-/Sperduto-Index und Prognose

<table>
<thead>
<tr>
<th>GPA-Index</th>
<th>Medianes Überleben in Monaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1 Punkte</td>
<td>2.6</td>
</tr>
<tr>
<td>1.5-2.5 Punkte</td>
<td>3.8</td>
</tr>
<tr>
<td>3 Punkte</td>
<td>6.9</td>
</tr>
<tr>
<td>3.5-4 Punkte</td>
<td>11</td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | S3-Leitlinie Nierenzellkarzinom | September 2015
Ähnliche Daten liegen für die Radiochirurgie vor. In die RTOG 9508 Studie wurden Patienten mit 1-3 Hirnmetastasen und einem KPS ≥ 70 eingeschlossen und zwischen Ganzhirnbestrahlung alleine mit 15 x 2,5Gy und Ganzhirnbestrahlung gefolgt von einer Radiochirurgie randomisiert [427]. Die Radiochirurgie verwendete ein Größenadaptiertes Bestrahlungskonzept mit 1 x 24Gy bei Metastasen-Durchmesser ≤ 2cm, 1 x 18Gy bei Metastasen-Durchmesser 2cm < x ≤ 3cm und 1 x 15Gy bei Metastasen-Durchmesser 3cm < x ≤ 4cm. Im Gesamtkollektiv verbesserte die Radiochirurgie das radiologische Ansprechen nach 3 Monaten sowie die lokale Tumorkontrolle nach einem Jahr was nach 6 Monaten eine Verbesserung des Performance Status sowie eine Reduktion des Steroidverbrauches bedingte. Im Gesamtkollektiv wurde keine Verbesserung des Gesamtüberlebens erzielt sondern lediglich in der Subgruppe der Patienten mit RPA Klasse I. Eine sekundäre Analyse unter Verwendung der GPA Klassifikation zeigte einen Überlebenvorteil von 21 Monaten versus 10,3 Monaten bei Patienten mit einem GPA von 3,5 bis 4 [428].

Die retrospektive Studie von Elaimy et al. analysierte die verschiedenen Therapieverfahren bei Hirnmetastasen. Die Studie umfasste 275 Patienten mit verschiedenen Primärtumordiagnosen, wobei es sich nur in 9 Fällen um ein Nierenzellkarzinom handelte [430]. An Behandlungsverfahren gingen die Ganzhirnbestrahlung, die Radiochirurgie, die offene Resektion und Kombinationen der Verfahren ein. In der multivariaten Analyse war das Überleben nach Radiochirurgie signifikant besser im Vergleich zu Ganzhirnbestrahlung (p<0,001), sowie die offene Resektion in Kombination mit Radiochirurgie im Vergleich zu SRS alleine (p=0,02). Kein signifikanter Unterschied ergab sich für den Vergleich von alleiniger SRS und Resektion kombiniert mit WBRT, was den Ergebnissen der Studie von Muacevic et al. entspricht.

Radiochirurgie oder Neurochirurgie alleine ohne Ganzhirnbestrahlung

Ob eine Ganzhirnbestrahlung zusätzlich zur lokalen Strahlentherapie oder Neurochirurgie notwendig ist wurde in drei randomisierten Studien überprüft.

Aoyama et al. randomisierten 132 Patienten mit 1-4 Hirnmetastasen, jede maximal 3cm im Durchmesser, zu alleiniger Radiochirurgie mit 1 x 18 – 25Gy oder Ganzhirnbestrahlung mit 10 x 3Gy gefolgt von Radiochirurgie [431]: nach Ganzhirnbestrahlung wurde die Radiochirurgie Bestrahlungsdoxis um 30% reduziert. Nur 7-8% der Patienten hatten ein Nierenzell Karzinom. Die zusätzliche Ganzhirnbestrahlung verbesserte die
lokale Kontrolle der behandelten Hirnmetastasen von 72,5% auf 88,7% nach einem Jahr und reduzierte gleichzeitig das Auftreten von neuen Hirnmetastasen von 63,7% auf 41,5%. Allerdings hatte die Ganzhirnbestrahlung keinen Einfluss auf die neurologische Sterberate sowie insbesondere keinen Einfluss auf das Gesamtüberleben, welches median 7,5 Monate sowie median 8 Monate nach Kombinationsbestrahlung sowie nach alleiniger Radiochirurgie betrug. Neurokognitive Defizite vor der Therapie waren signifikant mit dem Volumen der Hirnmetastasen korreliert. Obwohl die Ganzhirnbestrahlung keinen signifikanten Effekt auf die Neurokognition hatte, wurde nach alleiniger Radiochirurgie eine stabile Neurokognition nach ca. 13 Monaten beobachtet, während es nach Ganzhirnbestrahlung und Radiochirurgie nach 24 Monaten zu einer kontinuierlichen Verschlechterung kam [432].

Chang et al. untersuchten in einer randomisierten Studie die Neurokognition nach alleiniger Radiochirurgie versus Ganzhirnbestrahlung gefolgt von Radiochirurgie [433]. Nach der Rekrutierung von 58 Patienten wurde die Studie vorzeitig geschlossen, da nach Kombinationsbestrahlung ein zu hohes Risiko für Neurokognitive Defizite beobachtet wurde. Nach vier Monaten war die Merkfähigkeit im Kombinationsarm bei 52% der Patienten verschlechtert, was signifikant häufiger war als bei 24% der Patienten nach alleiniger Radiochirurgie.

Zusammenfassend verbessert die Ganzhirnbestrahlung zusätzlich zur Radiochirurgie oder Neurochirurgie die lokale Metastasenkontrolle und verhindert das Auftreten von neuen Hirnmetastasen ohne dabei aber das Gesamtüberleben oder das Überleben in gutem Performance Status zu verbessern. Die Neurokognition scheint bereits im kurzfristigen Verlauf nach 4 Monaten durch eine Ganzhirnbestrahlung beeinträchtigt zu werden. Bei limitierter cerebraler Metastasierbarkeit (1 – 4 Hirnmetastasen) sollte daher auf eine Ganzhirnbestrahlung verzichtet werden. Die Patienten sollten dann in engmaschiger Nachsorge (kraniales MRT alle 2-3 Monate) bleiben um neue Hirnmetastasen frühzeitig zu erkennen und entsprechende Salvage Therapien durchzuführen. Aktuelle Studien weisen darauf hin, dass nach alleiniger Radiochirurgie ohne Ganzhirnbestrah-
lungen auch bei 5-10 kleinen Hirnmetastasen ein ähnlich gutes Überleben erzielt wird wie nach Radiochirurgie von 2-4 Hirnmetastasen [436].

Postoperative Bestrahlung der Resektionshöhle

In einer prospektiven Phase II Studie an 49 Patienten (50 Läsionen) wurden 39 Patienten (40 Läsionen) postoperativ mittels Radiochirurgie behandelt [437]. Die Bestrahlungsdosis variierte zwischen 15 – 22 Gy. Insgesamt wurde bei 22% der Läsionen nach 12 Monaten ein Lokalrezidiv beobachtet, signifikant häufiger in der Kohorte ohne postoperative Radiochirurgie (50%) im Vergleich zu bestrahlten Kohorte (15%). Insgesamt 17,5% der bestrahlten Patienten entwickelten eine Radionekrose.

Zahlreiche retrospektive Studien berichten ähnliche vielversprechende lokale Kontrollraten nach postoperativer Bestrahlung der Resektionshöhle [438-441]. Insbesondere bei der Bestrahlung von größeren Resektionshöhlen könnte eine fraktionierte stereotaktische Bestrahlung ein günstigeres Sicherheitsprofil haben und niedrigere Raten an Radionekrosen verursachen [442-444].

Ob die verbesserte lokale Kontrolle durch eine Bestrahlung der Resektionshöhle die Lebensqualität und / oder Gesamtüberleben verbessert bleibt zu überprüfen.

Kombination von systemischer Therapie und Strahlentherapie

Zur Kombination von Strahlentherapie mit einem Tyrosinkinase Inhibitoren (TKI) existieren keine prospektiven Daten.

In einer retrospektiven Studie der University of Rochester wurden 25 Patienten mit Hirnmetastasen eines Nierenzell Karzinoms untersucht und mittels Ganzhirnbestrahlung, Radiochirurgie oder deren Kombination behandelt [445]. 7 Patienten wurden simultan zur Radiotherapie mit einem TKI behandelt, was keinen Einfluss auf lokale Tumorkontrolle oder Überleben hatte im Vergleich zur Therapie ohne simultane TKI Gabe.

Staehler et al. untersuchten 106 Patienten mit spinal (n=55) oder cerebral (n=51) metastasiertem Nierenzellkarzinom, die mit Sorafenib oder Sunitinib simultan zur Radiochirurgie behandelt wurden [446]. Es wurden keine Grad III Nebenwirkungen der Radiochirurgie beobachtet; jeweils 3 Patienten entwickelten eine Grad 2 Tumorblutung oder einen Grad 2 Krampfanfall. Nach einer medianen Nachbeobachtungszeit von 14,7 Monaten konnte eine lokale Tumorkontrolle in 98% der Patienten beobachtet werden und das mediane Gesamtüberleben betrug 11,1 Monate im Kollektiv der Patienten mit Hirnmetastasen.

8.3 Vorgehen bei speziellen Metastasenlokalisationen

Zusammenfassend gibt es keine eindeutigen Hinweise auf synergistische Effekte einer simultanen TKI Therapie und Strahlentherapie, Ganzhirnbestrahlung und / oder Radiochirurgie. Ebenso scheint die simultane Therapie aber auch keine gesteigerten Nebenwirkungen und Toxizitäten zu verursachen. Bei hohem Druck durch extra-cerebrale Metastasierung und gleichzeitig der Hirnmetastasierung kann daher die TKI Therapie ohne Unterbrechung für die cerebrale Strahlentherapie fortgesetzt werden. Umgekehrt kann bei im Vordergrund stehender Hirnmetastasierung die Systemtherapie für die lokale Strahlentherapie pausiert werden.

Zusammenfassung

Zusammenfassend verbessert die lokale Therapie-Intensivierung mittels Radiochirurgie oder Neurochirurgie zusätzlich zur Ganzhirnbestrahlung das Gesamtüberleben bei Patienten mit singulärer Metastase und gutem KPS. Bei kleineren Metastasen ist die Radiochirurgie isoeffektiv und weniger toxisch im Vergleich zur neurochirurgischen Resektion. Bei größeren Metastasen (> 3,5 · 4 cm) mit z.B. midline shift und bei schneller Symptomprogression sollte die neurochirurgische Entfernung angestrebt werden [447]. Bei limitierter Metastasierung (1-4 Hirnmetastase) verbessert eine Ganzhirnbestrahlung zusätzlich zur Radiochirurgie oder Neurochirurgie nicht das Gesamtüberleben bei jedoch verschlechterter Neurokognition nach einem Jahr. Daher sollte sie erst als Salvage Therapie bei Auftreten-multiplen Hirnmetastasen angewendet werden [414, 415, 434, 448].

8.3.4. Lebermetastasen

Auch Lebermetastasen kommen selten isoliert vor.

Thelen et al. führten bei 31 Patienten eine Resektion von Lebermetastasen durch. Das 1-, 3- und 5-Jahres-Überleben erreichte 82 %, 54 % und 39 %. In einer Multivarianzanalyse waren freie Resektionsränder der einzig signifikante Prognosefaktor [449].

In einer holländischen Studie wurde über die Resektion von Leberfiliae bei 33 Patienten berichtet. Das 1-, 3- und 5-Jahres-Überleben betrug 79 %, 47 % und 43 %. Ein metachrones Auftreten und eine R0-Resektion waren günstige prognostische Faktoren [450].

Staehler et al. berichteten über 88 Patienten mit Leberfiliae, von denen sich 68 einer Resektion unterzogen. Im Median wurden 2 Befunde (1-30) reseziert. 79 % der Gesamtgruppe erhielten zudem eine systemische Therapie. Das 5-Jahres-Überleben war signifikant besser in der Resektionsgruppe: 62 % vs. 29 % mit einem medianen Überleben von 142 vs. 27 Monate (p=0,003). Das mediane Überleben bei metachroner Metastasierung betrug 155 Monate. Patienten mit einer synchronen Metastasierung profitierten nicht von der Resektion [451].

8.3.5. Pankreasmusmetastasen

Da Pankreasmusmetastasen selten sind, gibt es hier nur wenige Fallberichte. Gelingt die komplettete Resektion, können sehr gute Überlebensraten erzielt werden. Sohn et al. gaben ein 5-Jahres-Überleben von 75 % bei 10 Patienten mit Metastasenresektion an [452].

Aus der Mayo Clinic wurde die Erfahrung bei 23 Patienten mit Pankreasmusmetastasen vorgestellt, wobei die Befunde bei 11 Patienten reseziert wurden. Nach im Mittel 42 Monaten waren 12 Patienten (52 %) am Leben, 6 der resezierten Patienten waren tumorfrei [453].

In einem Review von Reddy und Wolfgang zur Resektion isolierter Pankreasmusmetastasen handelte es sich in 150 Fällen um Metastasen von Nierenzellkarzinomen, was den größten Anteil im Vergleich zu anderen Primärtumordiagnosen darstellte. 11 Artikel enthielten Langzeitdaten. In sieben Arbeiten wurde ein 5-Jahres-Überleben von mehr als 80 % angegeben. Die Auswertung aller 150 Patienten ergab ein 5-Jahres-Überleben von 66 % und ein medianes Überleben von 8,8 Jahren. Patienten mit metachronen Metastasen zeigten einen Trend zum besseren Überleben als solche mit synchronen Filiae (Median 105 vs. 31,5 Monate; p=0,05) [455].

Die gleichen günstigen prognostischen Faktoren (solitäre Läsionen, langes krankheitsfreies Intervall), die bei der Metastasektomie eine Rolle spielen, rechtfertigen prinzipiell abhängig von der Lokalisierung und der Resektabilität der Metastasen als Alternative eine hochdosierte Radiotherapie mit dem Ziel einer lang anhaltenden Tumorkontrolle [69, 368, 374]. Insgesamt sind jedoch die Erfahrungen zur Pankreasstereotaxie von Nierenzellkarzinommetastasen auf Einzelfallberichte begrenzt.

8.4. Stellenwert der perioperativen Systemtherapie bei Metastasenchirurgie

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Zur perioperativen Systemtherapie im Zusammenhang mit einer geplanten Metastasenresektion gibt es keine Daten aus prospektiv randomisierten Studien.</td>
</tr>
<tr>
<td></td>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>
9. Neoadjuvante Therapie

9.1. Neoadjuvante Therapie

9.1.1. Konsensbasierte Empfehlung

EK

In der nicht-metastasierten Situation soll vor Primär tumorresektion keine neoadjuvante Therapie durchgeführt werden.

Starker Konsens

9.2. Evidenzbasiertes Statement

Level of Evidence

2+

Der Effekt einer neoadjuvanten Therapie auf die Volumenreduktion des Primärtumors oder eines Cava-Thrombus ist klinisch nicht relevant.

Literatur: [456-460]: (LoE 3), [461]: (LoE 2+), [362-364, 462, 463]: (LoE 2-)

Starker Konsens

9.3. Evidenzbasierte Empfehlung

Empfehlungsgrad

A

Eine neoadjuvante Therapie soll nur im Rahmen von Studien durchgeführt werden.

Level of Evidence

2+

Literatur: [464-467]

Starker Konsens

Hintergrund

Als Rationale für eine neoadjuvante Therapie bei nicht-metastasierter Situation werden folgende Faktoren angeführt:

- eine mögliche Volumenreduktion eines großen Primärtumors, um diesen operabel zu machen bzw. ein organerhaltendes Vorgehen zu ermöglichen, wenn dies notwendig ist [456-458, 468]
- die Therapie möglicher Mikrometastasen bzw. zirkulierender Tumorzellen [469]

Zudem wird eine Systemtherapie präoperativ zumeist besser toleriert als postoperativ im adjuvanten Setting. Das Therapieintervall wird in der Regel kürzer gewählt, eine Einschränkung der Nierenfunktion durch eine stattgehabte Operation an der betroffenen Niere besteht noch nicht.
9.1 Neoadjuvante Therapie

Von Nachteil kann sein, dass es durch die neoadjuvante Therapie zu einer Verzögerung der Operation des Primärtumors kommt, wenn dieser bereits komplett resektabel ist und die Hauptintention der neoadjuvanten Therapie eher die Verhinderung eines frühen Rezidivs bei hohem Risikoprofil ist. Möglicherweise kann ein bestimmter Anteil an Patienten der Operation nicht mehr zugeführt werden aufgrund von Toxizität oder Progress unter der Systemtherapie. Zudem kann die medikamentöse Therapie zu erhöhten peri-/postoperativen Komplikationen wie Wundheilungsstörungen, Blutungsneigung, Thromboembolien führen. Dies kann letztendlich auch eine erhöhte Mortalitätsrate bedingen [467].

Die Sicherheitsaspekte während und nach einer neoadjuvanten Therapie und deren Auswirkung auf die Operation waren ein Hauptbestandteil von verschiedenen retrospektiven Untersuchungen. Nach neoadjuvanter Therapie mit Sunitinib betrug die Komplikationsrate bezüglich der Tumorwunde (Serom, Bauchwandhernie etc.) 11 % ohne höhergradige Komplikationen [456, 468]. Eine größere retrospektive Fallserie von 70 Patienten publizierten Chapin et al. 2011 mit besonderem Augenmerk auf die postoperativen Komplikationen nach neoadjuvanter zielgerichteter Therapie im Vergleich zu Patienten (n=103), die primär nephrektomiert worden waren [470]. Von immerhin 64 % der Patienten mit Komplikationen waren dies hauptsächlich oberflächliche Wunddehiszenzen (24,3 % vs. 5,8 %; p < 0,001) und Wundinfektionen (12,9 % vs. 2,9 %; p=0,015). Es gab jedoch keine signifikanten Unterschiede bei der faszialen Dehiszenz, allgemeinen und schweren Komplikationen. Insgesamt war jedoch die Rate an späten chirurgischen Komplikationen im neoadjuvanten Arm deutlich höher mit 15,9 % vs. 3,8 % (p=0,002) und vielfältiger mit mehr als einer Komplikation bei 76,1 % vs. 50,9 % der Patienten (p=0,013).

Fünf prospektive Phase-II-Studien mit einer neoadjuvanten Target-Therapie seien etwas näher aufgeführt:

50 Patienten mit einem metastasierten Nierenzellkarzinom und einem resektablen Primarius in situ erhielten neoadjuvant Bevacizumab (n=27) oder Bevacizumab + Erlotinib (n=23) über 8 Wochen. Ein Ansprechen > 10 % (keine PR! [partielle Remission]) des Primärtumors fand sich bei 23 % der Patienten. 12 % der Primärtumoren waren progredient. 42 Patienten (84 %) konnten nephrektomiert werden. Das mediane progressionsfreie Überleben betrug 11 Monate, das Gesamtüberleben 25,4 Monate. Eine verzögerte Wundheilung nach Nephrektomie trat bei 31 % der Fälle auf, was signifikant häufiger ist verglichen mit einer historischen Kontrollgruppe mit 2 % (p < 0,001) [364].

28 Patienten mit lokal fortgeschrittenem oder metastasiertem Nierenzellkarzinom wurden neoadjuvant mit Sorafenib (2 x 400 mg) behandelt (mediane Behandlungsdauer fünf Wochen). Die Größenreduktion des Primärtumors lag im Median bei 10 %. Zwei Patienten hatten eine partielle Remission, 26 eine Stabilisierung der Erkrankung, keiner einen Progress. Bei vier Patienten kam es zu einem Downstaging von T2 zu T1. Bei zwei Patienten mit einem Tumorthrombus war dieser nach neoadjuvanter Therapie...
nicht mehr vorhanden. Wundheilungsstörungen traten in einem Fall auf, ein Patient erlitt einen Herzinfarkt [362].

20 Patienten mit lokal fortgeschrittenem oder metastasiertem Nierenzellkarzinom erhielten kontinuierlich über 3 Monate Sunitinib (37,5 mg). Bei 85 % der Patienten war eine Größenereduktion des Primärumors im Mittel von 12 % zu verzeichnen (1PR, kein PD [progressive disease]). Komplikationen im Rahmen der Nephrektomie wurden nicht beschrieben [363].

Eine Auswertung zweier Phase-II-Studien mit 45 intermediate prognosis- und 21 poor prognosis-Patienten (MSKCC-Score) ergab nach neoadjuvanter Gabe von 2-3 Zyklen Sunitinib (50 mg, 4 + 2-Schema) eine mediane Größenabnahme des Primärtumors von 13 % (4 PR). Eine Nephrektomie konnte bei 47 Patienten (71 %) durchgeführt werden. 18 % der Patienten waren während der neoadjuvanten Phase progredient, bei weiteren 36 % kam es während des therapiefreien perioperativen Intervalls zum Progress. Das progressionsfreie Überleben betrug 6,3 Monate, das Gesamtüberleben 15,2 Monate, getrennt für intermediate prognosis und poor prognosis 26 vs. 9 Monate (p < 0,01) perioperative Komplikationen traten in 26 % der Fälle auf, davon handelte es sich in 13 % um Wundheilungsstörungen [462].

Eine Phase-II-Studie mit 102 Patienten (78 % intermediate prognosis und 22 % poor prognosis, Primärtumor in situ) untersuchte den neoadjuvanten Einsatz von Pazopanib (800 mg). Der Primärtumor zeigte in 14 % eine PR, in 69 % ein SD (stable disease) sowie in 16 % ein PD. 66 % der Patienten wurden nephrektomiert. Das progressionsfreie Überleben betrug 9 Monate, das Gesamtüberleben 22,5 Monate, wobei signifikante Unterschiede zwischen intermediate prognosis- und poor prognosis-Patienten bestanden [463].

Fasst man die Ergebnisse dieser prospektiven Phase-II-Studien zusammen, so ergab sich eine Größenreduktion bei 23-85 % der Primärtumore, die Größenreduktion war jedoch mit 10-13 % gering. Die Rate an partiellen Remissionen lag entsprechend nur zwischen 0 % und 14 %. Progressionen während der neoadjuvanten Therapie traten in bis zu 18 % der Fälle auf. Drei Studien gaben die tatsächlichen Nephrektomieraten mit 66-84 % an. Die Rate an Wundheilungsstörungen lag zwischen 13 % und 31 %.

Die Dauer der neoadjuvanten Therapie betrug in den Studien 8-12 Wochen.

Aktuell laufen zahlreiche weitere Studien zum neoadjuvanten Einsatz einer Target-Therapie, wobei es sich durchweg um Phase II-Studien handelt.
9.2 Adjuvante Therapie

| 9.4. |
| Evidenzbasierte Empfehlung |
| Empfehlungsgrad | Eine adjuvante Immuntherapie oder Vakzinierungstherapie soll nicht durchgeführt werden. |
| A |
| Level of Evidence | Literatur: [471-480] |
| 1++ |
| Konsens |

| 9.5. |
| Evidenzbasierte Empfehlung |
| Empfehlungsgrad | Eine adjuvante Behandlung mit Target-Therapie (Multikinase-Inhibitoren, mTOR-Inhibitoren) soll nur in Studien durchgeführt werden. |
| A |
| Level of Evidence | Literatur: [464-466, 469, 480] |
| 4 |
| Starker Konsens |

Hintergrund

Rationale für eine adjuvante Therapie ist eine Unterstützung des Behandlungserfolgs der Operation des Primärtumors durch Verbesserung der Heilungsaussichten oder zumindest Verlängerung der Zeit bis zum Tumorrezidiv oder zur Metastasierung.

Eine Sonderform der adjuvanten Therapie stellt die Behandlung von Patienten nach radikaler operativer Resektion einer oder mehrerer Metastasen dar, durch die ein NED-Status (no evidence of disease) erreicht wird.

Eine adjuvante Therapie kann in einer lokalen Strahlentherapie oder in einer systemischen Behandlung als Immuntherapie einschließlich Vakzinierung, Hormontherapie oder Chemotherapie einschließlich zielgerichteter Therapie („targeted therapy“) oder in einer Kombination dieser Behandlungsmaßnahmen bestehen.

In einer 2011 publizierten Metaanalyse von 10 RCTs mit 2.609 Patienten ergab sich kein Vorteil für eine adjuvante Behandlung (Immuntherapie, Vakzinierung, klassische Chemotherapie, Thalidomid) bezüglich Verlängerung des DFS (disease free survival) oder OS (overall survival) im Vergleich zur unbehandelten Kontrollgruppe [480].

In der adjuvanten Situation konnte durch die Strahlentherapie in einer Metaanalyse bei 7 vor allem retrospektiven Arbeiten mit 735 Patienten zwar eine Senkung des Lokalrezidivrisikos bei älteren Bestrah lungstechniken gezeigt werden, jedoch kein Einfluss auf das Überleben [481]. Somit besteht keine Indikation zur postoperativen Radiotherapie. Die Klärung des Stellenwerts moderner Hochpräzisionsbe strahlungstechniken in der adjuvanten Situation bleibt künftigen Studien vorbehalten.

Es gibt keine Belege für den Nutzen einer adjuvanten Vakzinierung. Sowohl die Vakzinierung mit autologen bestrahlten Tumorzellen plus Bacillus Calmette-Guérin als auch mit HSPPC-96 haben in randomisierten Phase-III-Studien zu keiner Verbesserung von DFS oder OS geführt [477, 478]. Die autologe Tumorzell-Vakzinierung ergab in einer randomisierten Phase-III-Studie eine signifikante Verbesserung des 5-Jahres-DFS von 67,8 % im Placeboarm auf 77,4 % im Verumarm. Es bestanden methodische Probleme durch ein Ungleichgewicht der randomisierten Patienten, die keine Therapie erhielten (99 im Verum- und 75 im Placeboarm), was insgesamt 174/553 Patienten (32 %) der Gesamtbevölkerung entspricht. Außerdem war das Gesamtüberleben im Verumarm nicht signifikant verbessert [479]. Ergebnisse einer erneuten Analyse des Gesamtüberlebens mit längerer Nachbeobachtungszeit liegen nicht vor.

Es gibt keine Belege für den Nutzen einer adjuvanten Hormontherapie, z. B. mit Medroxyprogesteronacetat [482].

Da es keine klassischen zytotoxischen Substanzen mit nachgewiesener Wirksamkeit bei metastasierter Erkrankung gibt, sind die Voraussetzungen für ihre Verwendung in der adjuvanten Therapie nicht erfüllt. Erst mit der Einführung der Target-Therapie und Wirksamkeitsnachweis bei metastasierter Erkrankung hat sich die Möglichkeit für deren Einsatz im Rahmen der adjuvanten Therapie ergeben.

Es gibt gegenwärtig keine Belege für den Nutzen einer adjuvanten Target-Therapie. Sechs große randomisierte Phase-III-Studien sind derzeit noch nicht abgeschlossen und ausgewertet worden:

- Die ASSURE-Studie mit Sunitinib vs. Sorafenib vs. Placebo
 ClinicalTrials.gov NCT00326898
- Die SOURCE-Studie mit Sorafenib für 1 Jahr vs. Sorafenib für 3 Jahre vs. Placebo
 ClinicalTrials.gov NCT00492258
- Die S-TRAC-Studie mit Sunitinib für 1 Jahr vs. Placebo
 ClinicalTrials.gov NCT00375674
- Die EVEREST-Studie mit Everolimus für 1 Jahr vs. Placebo
 ClinicalTrials.gov NCT01120249
- Die PROTECT-Studie mit Pazopanib für 1 Jahr vs. Placebo
 ClinicalTrials.gov NCT01235962
- Die ATLAS-Studie mit Axitinib für 3 Jahre vs. Placebo
 ClinicalTrials.gov NCT01599754

Zusammenfassend stellt die Leitliniengruppe zur neo-/adjuvanten Therapie des Nierenzellkarzinoms fest, dass aufgrund der fehlenden Empfehlung weiterhin erheblicher Forschungsbedarf besteht, um effektivere Therapieoptionen zu entwickeln bzw. zu optimieren. Die derzeit zur Verfügung stehenden Substanzen haben nicht das Potential, für die präoperative Therapie empfohlen zu werden. Hier bedarf es neuer Therapieansätze mit hoffentlich effektiveren Substanzen, insbesondere was die Tumorvolumenreduktion betrifft. Zudem wäre die Durchführung prospektiver, randomisierter Studien wünschenswert. In Bezug auf die adjuvante Therapie bleiben die Ergebnisse der großen Phase-III-Studien zu den zielgerichteten Substanzen abzuwarten. Sollten diese einen
negativen Ausgang haben, gilt auch für diesen Sektor, sich innovativen Wirkprinzipien zuzuwenden und diese in klinischen Studien zu untersuchen.
10. Palliative Lokaltherapie

10.1 Palliative Radiotherapie

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasiertes Statement</th>
<th>Level of Evidence</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bei Patienten mit Nierenzellkarzinom und Hirn-/Knochenmetastasen, spinaler Kompression und anderen symptomatischen Metastasen soll die Indikation für eine palliative Strahlentherapie geprüft werden.</td>
<td>2</td>
<td>Knochenmetastasen und spinale Kompression: Leitlinienadaptation: [69, 483], Literatur: [408, 484-487] Multiple Hirnmetastasen: Leitlinienadaptation: [69], Literatur:[488-490]</td>
</tr>
<tr>
<td>B</td>
<td>Wenn es ausschließlich um die Behandlung von lokalen Beschwerden geht, sollte eine palliative Radiotherapie (abhängig von der Ausbreitung/dem Ausmaß der Metastasierung und dem Allgemeinzustand des Patienten) durchgeführt werden.</td>
<td>4</td>
<td>Leitlinienadaptation: [69] Literatur: Level 2: B [394, 400, 491-497]</td>
</tr>
<tr>
<td>B</td>
<td>Bei einer palliativen Bestrahlung von Patienten mit begrenzter Prognose sollten Kurzzeitkonzepte (z. B. 1 x 8 Gy oder 5 x 4 Gy) angewendet werden. Ist dahingegen von einem längeren Überleben (> 6 Monate) auszugehen, sollte ein Bestrahlungsschema mit höherer Intensität und/oder Dosierung verwendet werden (z. B. 10 x 3 Gy).</td>
<td>4</td>
<td>Leitlinienadaptation: [69] Literatur: [498]</td>
</tr>
</tbody>
</table>

Hintergrund

In der palliativen Therapie von Metastasen gelten grundsätzlich die gleichen Empfehlungen wie für die palliative Radiotherapie bei anderen Tumorentitäten. Generell wird die palliative Radiotherapie kaum tumortypspezifisch sowohl zur zeitbegrenzten loka len Kontrolle (Prävention von Komplikationen, Erhalt der Lebensqualität) als auch zur Symptomlinderung eingesetzt. Bei der Auswahl der Fraktionierungsschemata sind der Allgemeinzustand und die Lebenserwartung zu berücksichtigen. Auch für das Nieren-
zellkarzinom wird deshalb im Folgenden auf die jeweils aktualisierten Leitlinien und Reviews zur palliativen Radiotherapie verwiesen bzw. werden Statements aus den Leitlinien adaptiert.

Die Empfehlungen 10.1.-10.3. basieren auf einer entsprechenden Empfehlung einer bereits bestehenden evidenzbasierten Leitlinie und wurden ohne inhaltliche Modifikationen von der Leitliniengruppe adaptiert [69]. Der Hintergrund dieser Empfehlungen wird in den folgenden Unterkapiteln für die einzelnen Lokalisationen (10.1.2-10.1.4) dargestellt.

Zu den Empfehlungen 10.2. und 10.3.: Neben dem Einfluss der Metastasektomie und der Radiotherapie auf das Überleben besteht auch eine Indikation zur lokalen Behandlung von schmerzhaften Metastasen. Bei Patienten mit schmerzhaften Metastasen eines Nierenzellkarzinoms ist die palliative Radiotherapie eine gute Wahl [69]. Im Allgemeinen kann mit einer Bestrahlung in 60-85 % der Fälle ein Abnehmen der Beschwerden erreicht werden [491-495]. Aufgrund der relativen Radioresistenz werden beim Nierenzellkarzinom hypofraktionierte Bestrahlungen bzw. bei besserer Prognose auch höhere Dosierungen verwendet (siehe auch Kapitel 10.1.2) [499, 500]

10.1.1. Knochenmetastasen

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bei Frakturrisiko oder instabiler Fraktur sollte eine stabilisierende Chirurgie vor einer Radiotherapie erwogen werden.</td>
</tr>
</tbody>
</table>

Level of Evidence

4

Leitliniendadaptation: [69, 402]

Starker Konsens

Hintergrund

Die Empfehlung 10.4. basieren auf einer entsprechenden Empfehlung einer bereits bestehenden evidenzbasierten Leitlinie und wurden ohne inhaltliche Modifikationen von der Leitliniengruppe adaptiert [69].

anderer Tumorentitäten. Das Standardkonzept zur Schmerzlinderung ist 1 x 8 Gy/5 x 4 Gy mit einer kürzeren Behandlungsdauer und gleicher schmerzlindernder Wirkung im Vergleich zu 10 x 3 Gy [484, 485].

Nach einer operativen Entfernung von Knochenmetastasen sollte eine postoperative Radiotherapie wegen der möglichen Kontamination des Operationsgebietes und der häufig inkompletten Resektion folgen [402, 502].

Bei spinaler Kompression durch Knochenmetastasen war bei Patienten mit Dekompression vor Bestrahlung eine höhere Rate an Gehfähigkeit zu erreichen als mit alleiniger Bestrahlung (84 % vs. 57 %) [402].

10.1.2. Spinale Kompression

<table>
<thead>
<tr>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlungsgrad</td>
</tr>
<tr>
<td>Evidenzbasierte Empfehlung</td>
</tr>
<tr>
<td>Level of Evidence</td>
</tr>
<tr>
<td>Leitliniendadaptation: [69]</td>
</tr>
<tr>
<td>Literatur: [402, 408, 487]</td>
</tr>
<tr>
<td>Starker Konsens</td>
</tr>
</tbody>
</table>

Hintergrund

Die Empfehlung basiert auf einer entsprechenden Empfehlung einer bereits bestehenden evidenzbasierten Leitlinie und wurde ohne inhaltliche Modifikationen von der Leitliniengruppe adaptiert [69].

Auch bei spinalen Metastasen ist die schmerzlindernde Wirkung nach konventionell geplanter und dosierter Strahlentherapie nicht schlechter als nach stereotaktischer Radiatio (Ansprechraten 62 % vs. 68 %). In dieser Studie zeigten allerdings mehr Patienten nach Stereotaxie eine komplette Remission als nach konventionell fraktionierter palliativer Bestrahlung (33 % vs 12 %) und der Effekt nach Stereotaxie hielt deutlich länger an (1,7 vs 4,8 Monate) [408]. Die Überlebenszeit von Patienten mit spinaler Kompression korreliert signifikant mit der Zahl der metastatisch befallenen übrigen Organe (6-Monatsüberleben 93 % vs. 57 % vs. 21 % bei 0, 1 oder 2 weiteren befallenen extraspinalen Organen [487]. Patienten mit guter Prognose sollten deshalb hochdosiert stereotaktisch bestrahlt werden. Wegen der zusätzlichen Belastung durch die aufwändigere Lagerung und die längere Dauer der einzelnen Sitzungen sollten Patienten in schlechtem Allgemeinzustand und mit schlechter Überlebensprognose weiterhin konventionell hypofraktioniert bestrahlt werden, da die Stereotaxie auch eine zusätzliche Belastung sein kann.
10.1.3. Multiple Hirnmetastasen

10.6. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Empfehlung</th>
<th>Level of Evidence</th>
<th>Leitliniendadaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bei Patienten mit Nierenzellkarzinomen und multiplen (> 4 Hirnmetastasen) und mäßigem bis gutem Karnofsky-Index wird eine Bestrahlung des gesamten Gehirns empfohlen.</td>
<td>2</td>
<td>Leitliniendadaptation [69]</td>
</tr>
</tbody>
</table>

Evidenzgrad B

Level of Evidence 2

Starker Konsens

10.7. Evidenzbasiertes Statement

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Empfehlung</th>
<th>Leitliniendadaptation</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Es gibt Hinweise, dass bei Patienten mit > 4 Hirnmetastasen und einem Karnofsky-Performance-Index von mindestens 60-70 % durch die Ganzhirnbestrahlung weniger metastasenbedingte Beschwerden auftreten.</td>
<td>Leitliniendadaptation: [69]</td>
<td>[416, 421, 503]</td>
</tr>
</tbody>
</table>

Level of Evidence 3

Literatur: [416, 421, 503]

Konsens

10.8. Evidenzbasiertes Statement

<table>
<thead>
<tr>
<th>Level of Evidence</th>
<th>Empfehlung</th>
<th>Leitliniendadaptation</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Das mediane Überleben von unbehandelten Patienten mit Hirnmetastasen beträgt einen Monat, mit Kortikosteroiden 2 Monate und nach Behandlung mit WBRT 3-6 Monate.</td>
<td>Leitliniendadaptation: [69]</td>
<td>[425, 504]</td>
</tr>
</tbody>
</table>

Level of Evidence 2

Literatur: [425, 504]

Konsens

Hintergrund

sowie der extracraniellen Metastasen [69, 488, 489, 506]. Patienten mit Hirndruck-
symptomatik haben eine schlechtere Prognose als die übrigen [490]. Jüngere Patienten
(unter 65 Jahre) in gutem Allgemeinzustand (Karnofsky-Index ≥ 70) und ohne extrace-
rebrale Metastasen haben mit 8,5 Monaten Überlebenszeit nach Ganzhirnbestrahlung
die beste Überlebensprognose im Vergleich zu den übrigen [421]. Bezogen auf Effekti-
vität und Toxizität sind die moderat hypofraktionierten Verfahren (10 x 3 Gy) den hy-
pofraktionierten Konzepten (5 x 4 Gy) nicht überlegen [421, 507]. Angesichts der
prognostischen Bedeutung des Allgemeinzustands ist bei einem auch unter adäquater
Dexamethason-Therapie irreversibel schlechten Allgemein- oder neurologischen Zu-
stand eine Ganzhirnbestrahlung nicht indiziert.
11. Supportive Maßnahmen, komplementäre Therapien

11.1. Supportive Therapie

11.1.1. Therapie tumorbedingter Symptome

Anämie
Zur Anämie wird auf die derzeit in Entstehung befindliche Leitlinie „Supportive Therapie bei onkologischen PatientInnen-interdisziplinäre Querschnittsleitlinie“ verwiesen.

Schmerz
Das Schema zur Schmerztherapie weist drei Stufen auf:

<table>
<thead>
<tr>
<th>Stufe I: ein Nichtopioid-Analgetikum, z. B. Paracetamol oder NSAR (Ibuprofen, Diclofenac), Koanalgetika und/oder Adjuvante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stufe II: ein schwach wirkendes Opioid (nicht unter BtMVV), z. B. Tramadol oder Tildin/Naloxon ± Nichtopioid-Analgetikum, Koanalgetika und/oder Adjuvante</td>
</tr>
<tr>
<td>Stufe III: ein stark wirkendes Opioid (BtMVV), z. B. Morphin, ± Nichtopioid-Analgetikum, Koanalgetika und/oder Adjuvante</td>
</tr>
</tbody>
</table>

Zusätzlich zu diesem Stufenschema empfiehlt die WHO eine nichtinvasive, wenn möglich orale Therapie. Diese Therapie soll individuell auf den Patienten abgestimmt und nach einem festen Zeitplan gegeben werden [508, 509].

11.1.2. Häufige Probleme in der supportiven Betreuung von Patienten mit Nierenzellkarzinom

<table>
<thead>
<tr>
<th>11.1.</th>
<th>Evidenzbasiertes Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Evidence</td>
<td>1++</td>
</tr>
<tr>
<td></td>
<td>Zur palliativen Therapie von ossären Metastasen stehen neben der medikamentösen analgetischen Therapie die lokale Radiotherapie und/oder eine chirurgische Intervention zur Verfügung.</td>
</tr>
</tbody>
</table>

Leitlinienadaptation: [510]
Literatur: [509]
Starker Konsens
11.2. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Zur Vermeidung von skelettalen Komplikationen bei ossären Metastasen sollten Bisphosphonate oder der monoklonale Antikörper Denusomab in Kombination mit Calcium und Vitamin D3 eingesetzt werden.</td>
</tr>
</tbody>
</table>

Level of Evidence 1-

- Leitlinienadaptation: [510, 511]
- Literatur: [508, 512-516]

Starker Konsens

11.3. Evidenzbasierte Empfehlung

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Zur Prävention von Kieferosteonekrosen soll eine zahnärztliche Untersuchung und evtl. zahnärztliche Sanierung sowie eine Unterweisung in Mundhygiene vor Beginn der medikamentösen Therapie mit Bisphosphonaten oder Denusomab erfolgen.</td>
</tr>
</tbody>
</table>

Level of Evidence 3+

- Leitlinienadaptation: [511]
- Literatur: [513, 514]

Starker Konsens

Hintergrund

Knochenmetastasen sind beim metastasierten Nierenzellkarzinom mit 30 bis 50 % häufig [393]. Knochenmetastasen treten häufig in tragenden Skelettabschnitten, so zum Beispiel im Achsenskelett, proximalen Femur und proximalen Humerus auf. Sie imponieren beim Nierenzellkarzinom in der Regel osteolytisch und weisen eine verminderte Stabilität auf. Knochenmetastasen sind ursächlich verantwortlich für skelettale Komplikationen. Folgende skelettale Ereignisse (skeletal related events=SRE) sind möglich:

- Pathologische Frakturen
- Spinale Kompression (u. a. ödembedingt)
- Strahlentherapie von ossären Metastasen (Indikation ossärer Schmerz oder nach chirurgischer Intervention)
- Operation am Knochen aufgrund von ossären Metastasen

- Lokale Radiotherapie und Operation
- Systemische knochenspezifische medikamentöse Therapie

Gemäß den Leitlinien für die Behandlung von ossären Metastasen des Prostatakarzinoms, des Mamma karzinoms und der Leitlinie der Gesellschaft für Osteonkologie werden Empfehlungen für die medikamentöse Prävention von SREs gegeben. Je nach Einzelfall können medikamentöse und radiotherapeutische Verfahren kombiniert werden.
Bei spinaler Kompression mit neurologischen Ausfällen muss eine sofortige chirurgische Vorstellung und ggf. eine sofortige chirurgische Therapie (Dekompression) erfolgen.

Für die Prävention eines durch die Tumortherapie induzierten Knochenmasseverlustes gibt es in Analogie zur DVO-Leitlinie zur Prophylaxe der Osteoporose in Abhängigkeit vom Einzelfall folgende Empfehlungen [511, 514]:

- Körperliche Aktivität
- Vermeidung von Immobilisation
- Kalzium (1000-1500mg/d)
- Vitamin D (800-2000 U/d)
- Reduktion Nikotinabusus
- Vermeidung eines BMI < 20 kg/m²

Hämaturie

Eine Hämaturie kann durch den Primärtumor oder Metastasen eines Nierenzellantumors bedingt sein [518]. Grundsätzlich steht die konservative, operative oder interventionelle Behandlung zur Verfügung. Bei Blutungskomplikationen wie Flankenschmerz, Harnstauung durch Koagel oder Harnverhalt kann eine endoskopische Ausräumung notwendig werden. Bei Anämie oder einem unvertretbar hohen Operationsrisiko für schwerkranke Patienten kann eine Embolisation der Nierenarterie sinnvoll sein [518, 519].

Hyperkalzämie

Eine Hyperkalzämie wird bei etwa 15 % der Patient(inn)en mit Nierenzellkarzinom beobachtet und ist unterschiedlicher Genese [520-527]:

- osteolytische Metastasen
- Überproduktion von Parathormon-related protein (PTHrP)
- Vermehrte Prostaglandin-Produktion mit konsekutiver Knochenresorption

Nach sorgfältiger Ursachenklärung stehen eine therapeutisch verstärkte Infusionstherapie, Calcitonin und Bisphosphonate zur Verfügung.

Polyglobulie
Nierenzellkarzinome haben in ca. 20% die Fähigkeit zur ektopen Hormonbildung, welche zu paraneoplastischen Symptomen führen kann. Dabei tritt in ca. 1-5% der Patienten eine Polyglobulie auf [528]. Diese ist bedingt durch eine Erythropoetinbildung durch Tumorzellen. Die Therapie besteht nach Ausschluss anderer Formen der Erythrozytose in der Behandlung der Grunderkrankung, Volumensubstitution und ggf. Aderlässen [528, 529].

11.1.3. Prophylaktische/supportive Behandlung häufiger unerwünschter therapiebedingter Wirkungen

<table>
<thead>
<tr>
<th>Empfehlungsgrad</th>
<th>Evidenzbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Zur Reduzierung des Fatigue-Syndroms bei Krebspatienten soll ein sich an der individuellen Belastungsfähigkeit orientierendes Ausdauertraining im Rahmen der Bewegungstherapie durchgeführt werden.</td>
</tr>
</tbody>
</table>
| **Level of Evidence** | Adaptation [530]
Literatur: [531-547] |

Hintergrund

Welche Therapiefrequenzen hier sinnvoll sind, ist nicht eindeutig zu beantworten. Der Durchschnitt in den vorliegenden Arbeiten liegt bei 3x pro Woche über 30-60 Minuten [553-556].

Es ist zu berücksichtigen, dass die Daten zum Nutzen einer Bewegungstherapie auf Studien basieren, die entweder andere Entitäten (überwiegend Brustkrebs) oder bezüglich der Krebsentität gemischte Populationen untersuchten. Der Leitliniengruppe liegen bisher keine Hinweise vor, die gegen eine Übertragbarkeit der positiven Ergebnisse auf Patienten mit Nierenzellkarzinom sprechen.

Grundsätzliche Informationen zur Ergotherapie finden sich im Kapitel 12.
11.1.4. Nebenwirkungsmanagement

Folgende typische Nebenwirkungen der Targettherapie des Nierenzellkarzinoms können auftreten:

- Hauttoxizitäten
- Diarrhö
- Übelkeit/Erbrechen
- Hypertonus
- Kardiale Nebenwirkungen
- Blutbildveränderungen
- Lebertoxizität
- Nierenversagen
- Hypothyreose
- Mukositis
- Pulmonale Nebenwirkungen
- Depression

Zu Hauttoxizität, Diarrhö, Übelkeit und Erbrechen wird auf die derzeit in Entstehung befindliche Leitlinie „Supportive Therapie“ verwiesen.

Das Nebenwirkungsmanagement umfasst die symptomatische Behandlung sowie das Dosierungsmanagement der antitumoralen Therapie und auch die Anpassung des Behandlungsschemas.

Grundsätzlich sollte die Aufklärung jedes/r Patienten/in mündlich und schriftlich erfolgen.

Hypertonus

Kardiale Nebenwirkungen

Blutbildveränderungen

Lebertoxizität

Ein Anstieg der Transaminasen ist unter TKI möglich (in 2-3 % aller Fälle), aber selten therapielimitierend. Einige TKI können Leberschäden Grad 3 oder 4 auslösen (in < 1 %), so dass insbesondere in den ersten Therapiemonaten unter TKI-Therapie eine engmaschige Kontrolle der Leberwerte durchgeführt werden sollte [264, 285, 321, 322, 557].

Nierenversagen

Hypothyreose

Da in den Zulassungsstudien meist keine routinemäßige Verlaufsbeurteilung endokrinologischer Parameter erfolgte, wurden Nebenwirkungen der Medikamente bezüglich der Schilddrüsenfunktion zunächst nur aus retrospektiven Analysen bekannt. Von Bedeutung ist die primäre medikamentenassozierte Hypothyreose für die Therapie mit TKI [564]. Daraus leitet sich die Empfehlung zur Kontrolle der Schilddrüsenparameter vor und während einer Therapie mit TKI ab. Eine Empfehlung ist die Kontrolle des Serum-TSH am Tag 1 der ersten 4 Zyklen und anschließend alle 2-3 Zyklen, wobei keine evidenzbasierten Daten hierzu existieren [564-566]. Da eine schwerwiegende Hypothyreose auch die Auswirkungen anderer therapieassoziierter Nebenwirkungen wie Kardiomyopathie, Anämie oder Fatigue beeinflussen kann, ergibt sich häufig eine Therapieindikation [565]. Bei TSH-Spiegeln > 10 mU/l und Symptomen, die auf eine Hypothyreose hindeuten, sollte eine Hormonsubstitution (L-Thyroxin in üblichen Dosierungen) erfolgen [566].

Mukositis

Pulmonale Nebenwirkungen

Bei bis zu einem Drittel der behandelten Patienten mit metastasiertem Nierenzellkarzinom wird eine Dyspnoe beobachtet, vorwiegend unter mTOR-Inhibitoren und unter Interferon, sofern in den Zulassungsstudien berichtet [286, 322]. Eine seltene, aber belastende Nebenwirkung von mTOR-Inhibitoren ist die nicht-infektiöse Pneumonitis, die einer raschen diagnostischen Abklärung und Therapie bedarf [561]. Nach rückläufiger Klinik einer behandelten Pneumonitis ist die Weiterführung der Therapie selbst bei schwerwiegenden Verläufen häufig möglich.

Depression

Während einer Therapie mit Interferon stellt die Depression eine typische Nebenwirkung dar, die bei bis zu einem Viertel der behandelten Patienten vorkommen kann [568]. Eine randomisierte placebokontrollierte Studie konnte die Wirksamkeit des selektiven Serotonin-Wiederaufnahmehemmers Citalopram in diesen Fällen dokumentieren [569]. Als Nebenwirkung der Behandlung des fortgeschrittenen Nierenzellkarzinoms mit TKI, aVEGF-Substanzen oder mTOR-Inhibitoren ist die Depression eher selten. Aus den entsprechenden Zulassungsstudien liegen keine systematisch erfassten Daten zum Auftreten einer Depression vor.

11.1.5. Empfehlungen zur Palliativversorgung und zur Behandlung am Lebensende von Patienten mit Nierenzellkarzinom

<table>
<thead>
<tr>
<th>11.5.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Nierenzellkarzinompatienten sollen Zugang zu Informationen über Hospiz- und Palliativangebote erhalten.</td>
</tr>
<tr>
<td></td>
<td>Konsens</td>
</tr>
</tbody>
</table>

© Leitlinienprogramm Onkologie | S3-Leitlinie Nierenzellkarzinom | September 2015
<table>
<thead>
<tr>
<th>11.6.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Der palliativmedizinische Behandlungsbedarf sollte bei Nierenzellkarzinompatienten im fortgeschrittenen oder metastasierten Tumorstadium wiederholt ermittelt werden.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11.7.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Nierenzellkarzinompatienten im fortgeschrittenen oder metastasierten Stadium sollen bedarfsorientiert palliativmedizinisch mitbetreut werden.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11.8.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Tumorspezifische Medikamente und Maßnahmen sollen in der Sterbephase beendet werden.</td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11.9.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Behandlung am Lebensende soll sich an körperlichen Symptomen und psychischen, sozialen und spirituellen Bedürfnissen und Problemstellungen der Nierenzellkarzinompatienten sowie ihrer nahestehenden Bezugspersonen orientieren.</td>
</tr>
<tr>
<td>Starker Konsens</td>
<td></td>
</tr>
</tbody>
</table>

Hintergrund Empfehlung 11.5

Hintergrund Empfehlung 11.6-11.7

Insbesondere Patienten mit einem fortgeschrittenen oder metastasierten Karzinom leiden häufig an einer Vielzahl körperlicher Beschwerden und Belastungen (20-80 %).
Daten speziell für Patienten mit Nierenzellkarzinom liegen allerdings nicht vor. Da die Symptomlast in der ärztlichen Anamnese oft unterschätzt wird, hat die systematische patientengenerierte Symptomerfassung einen zunehmenden Stellenwert [577-581]. Palliativmedizinisches Symptomscreening ist inzwischen methodisch gut etabliert [582-587]. Für die Erfassung des palliativmedizinischen Behandlungsbedarfs stehen verschiedene einfache, auch im deutschen Sprachraum validierte Instrumente zur Verfügung [588], z. B.:

- Edmonton Symptom Assessment Scale [589]
- Minimales Dokumentationssystem [588]
- Basisdokumentation der HOPE-Kerndokumentation [586]

Die Instrumente können sowohl in der Wartezeit auf das Arztgespräch von den Patienten bearbeitet als auch in der ärztlichen Anamnese strukturgebend genutzt werden. Es sollte individuell für die Abteilung/Klinik entschieden werden, welches Instrument am geeignetsten ist. Ergänzend sollten psychosoziale Aspekte, Lebensqualität, Angst und Depression im Krankheitsverlauf wiederholt erfasst werden (vgl. dazu Kapitel 13 „Psychosozialen Aspekten“). Für den ESAS (Edmonton Symptom Assessment Scale) wurden bereits Schwellenwerte definiert, die nach klinischem Assessment auch die Zuwiesung zur Palliativmedizin oder anderen Spezialisten (Ernährungsberatung, Psychoonkologie) triggern [590].

Hintergrund Empfehlung 11.8

Hintergrund Empfehlung 11.9

11.2. Komplementäre Therapie

11.10. Konsensbasierte Empfehlung

<table>
<thead>
<tr>
<th>EK</th>
<th>Patienten sollten nach ihrer Nutzung von komplementären und alternativen Therapien befragt werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Konsens</td>
</tr>
</tbody>
</table>

11.11. Konsensbasierte Empfehlung

<table>
<thead>
<tr>
<th>EK</th>
<th>Patienten, die komplementäre Verfahren einsetzen, sollen auf mögliche Risiken und Interaktionen hingewiesen werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Konsens</td>
</tr>
</tbody>
</table>

Hintergrund

Prävalenz und Definition

In allgemeinen Untersuchungen liegt die Prävalenz des Einsatzes von Komplementärmedizin bei Tumorerkrankungen bei 50-60 % [600, 601]. Komplementäre Verfahren beruhen auf unterschiedlichen Methoden und Substanzen, die zum Teil aus der Naturheilkunde stammen können oder auf eine andere Weise den Gedanken eines ganzheitlichen Therapiekonzepts verfolgen.

Es gibt keine allgemein festgelegte Definition wie komplementäre Medizin und Alternativmedizin zu verstehen sind. Häufig sind die Begriffe nicht scharf getrennt und werden synonym verwandt. Auch die Grenzziehung zur sogenannten Schulmedizin ist nicht einheitlich.

Komplementäre Verfahren unterscheiden sich von alternativen Verfahren dadurch, dass sie den Wert der konventionellen Therapie und Vorgehensweise nicht in Frage stellen, sondern sich als Ergänzung verstehen [602].

11.2.1. Akupunktur
Die Evidenz in einem Cochrane-Review zur Akupunkturpunkttstimulation (11 Studien mit n=1247) kann wie folgt zusammengefasst werden: bei Chemotherapie kann Akupunkturpunkttstimulation das Auftreten von akutem Erbrechen reduzieren. Auf nicht akute oder verzögerte Übelkeit zeigte sich kein Effekt im Vergleich zur Kontrollgruppe [603].

Zur Schmerztherapie liegen nicht genug valide Daten vor, die für eine positive Empfehlung ausreichen. Eine ältere Arbeit nach westlichen Therapiestandards zeigt eine Verbesserung der Schmerzsituation, entbehrt aber einer Kontrollgruppe [604].

Wie auch in anderen Bereichen der komplementären Medizin ersetzt die gegebenenfalls flankierend eingesetzte Akupunktur nicht eine Schmerztherapie in Anlehnung an das WHO-Stufenkonzept. Wird sie zur Antiemese eingesetzt, ersetzt sie nicht den Einsatz einer Rescue-Medikation sowie einer angepassten, an den Leitlinien orientierten antiemetischen Therapie.

11.2.2. Meditation
Der Begriff „Meditation“ ist ein Sammelbegriff, hinter dem sich unterschiedlichste Ansätze verbergen. Gemeinsam ist ihnen, die (Selbst-)Achtsamkeit des Patienten zu erhöhen und damit für ihn einen besseren Umgang mit der Krankheit zu erreichen. In diesem Bereich sind auch die klassischen Entspannungsverfahren anzusiedeln.

Die bisher veröffentlichten Daten zu Tumorpatienten beruhen auf sehr heterogenen Daten unterschiedlicher Qualität mit eingeschränkter Aussagekraft [605]. In der begleitenden Therapie sind keine Nebenwirkungen zu erwarten. Der wesentliche Nutzen solcher Therapieverfahren liegt in einer Verbesserung des seelischen Wohlbefindens und einer Stressreduktion, die mit einer Verbesserung der Lebensqualität korrelieren. [605, 606].

11.2.3. Homöopathie
Es gibt keine Hinweise darauf, dass sich durch Homöopathie ein therapeutischer Nutzen für Patienten mit Nierenzellkarzinom erzielen lässt. Eine Cochrane-Analyse untersucht eine sehr heterogene Gruppe an Studien. In insgesamt 8 Studien (n=664) fanden sich vorläufige Daten zur Wirksamkeit von Calendula bei der Prophylaxe einer radiogenen Dermatitis (n=254) und für Traumeel S gegenüber Placebo als Mundspülung bei chemotherapieinduzierter Stomatitis. Zusammenfassend ergab sich aber keine überzeugende Evidenz für die Wirksamkeit von homöopathischen Präparaten in der Begleittherapie von Tumorpatienten [607].

11.2.4. Misteltherapie
Es gibt keinen Hinweis auf einen positiven Einfluss von Mistelextrakten auf die Prognose von Patienten mit Nierenzellkarzinom.

Das Cochrane-Review weist keinen positiven Effekt einer Therapie mit Mistelextrakten auf das Überleben nach, und auch die Verbesserung der Lebensqualität durch Mistelextrakte ist auf Basis der Datenlage nicht belegt [608]. Die Reviewer der Cochrane-Analyse sehen lediglich schwache Hinweise auf Verbesserung der Lebensqualität [608].
Die meisten Studien zur Misteltherapie sind methodisch nicht ausreichend. Die methodisch gut durchgeführten Studien zeigen keinen positiven Einfluss auf das Überleben. Es gibt nach wie vor keine Daten zur Langzeitanwendung und ihren Folgen [608].

Es ist unbestritten, dass es unter Misteltherapie zu einer Reihe von immunologischen Reaktionen kommt, die in verschiedenen Studien je nach Fragestellung voneinander abweichen. Ob es zu klinisch relevanten negativen immunologischen Effekten kommen kann, ist nach wie vor ungeklärt [609].

11.2.5. Hyperthermie

Die physikalische Zufuhr von Wärme bei Tumorerkrankungen kann in unterschiedlichen Formen stattfinden und wird wie folgt unterschieden [610]:

- Ganzkörperhyperthermie
- Perfusionshyperthermie
- Lokale Oberflächenhyperthermie
- Teilkörperhyperthermie

Da sowohl alle lokalen als auch die systemischen Verfahren mit dem Oberbegriff „Hyperthermie“ bezeichnet werden, ist es schwer, sie in der Beurteilung der Wirksamkeit voneinander abzugrenzen.

Die Ganzkörperhyperthermie zielt auf eine Erhöhung der Körperkerntemperatur ab und kann bei systemischer Metastasierung angewendet werden. Bei der Teilkörperhyperthermie, der Perfusionshyperthermie und der lokalen Oberflächenhyperthermie werden lokalisierte Malignome so selektiv wie möglich überwärmt.

11.2.6. Beratung

Die ärztliche Beratung im Bereich Komplementärmedizin sollte das Interesse und die Zielsetzung, die der Patient mit dem Komplex Komplementärmedizin verbindet, abfragen. In diesem Zusammenhang kann es hilfreich sein, das für den Patienten relevante, laienätiologische Modell zur Tumorbio-logie zu erfragen. Das Ziel der weiteren Beratung sollte neben einer fachlich orientierten Aufklärung über die Möglichkeiten und Risiken einer komplementären Therapie zu einer gegenseitigen Offenheit und damit zu einer Stärkung der Arzt-Patientenbeziehung führen. Damit können zum einen die Ei-
neninitiative und Selbstverantwortung der Patienten und ihre Kontrolle gestärkt werden, zum anderen der Patient eher vor un seriösen Angeboten geschützt werden, und nicht zuletzt Schäden durch Nebenwirkungen und Wechselwirkungen durch unkontrollierte Anwendung von komplementären und alternativen Methoden abgewendet werden [614, 615].
12. Rehabilitation und Nachsorge

12.1. Rehabilitation nach Akuttherapie

<table>
<thead>
<tr>
<th>12.1.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Allen Patienten soll nach lokaler Therapie eines Nierenzellkarzinoms eine fachspezifische Rehabilitation in Form einer Anschlussheilbehandlung (AHB)/ Anschlussrehabilitation (ARH, AR) angeboten werden.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12.2.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Bei fortbestehenden Beschwerden sollen die Patienten über weitere Rehabilitationsmaßnahmen aufgeklärt werden.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12.3.</th>
<th>Konsensbasiertes Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Auch Patienten mit systemischer Erkrankung können von der fachspezifischen Rehabilitation profitieren.</td>
</tr>
<tr>
<td>Mehrheitliche Zustimmung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12.4.</th>
<th>Konsensbasiertes Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Die Rehabilitation sollte entsprechend der Komorbidität der Patienten multidisziplinär und mit Hilfe multimodaler Therapiekonzepte erfolgen.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12.5.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Patienten mit Nierenzellkarzinom soll im Zuge einer Rehabilitationsmaßnahme eine psychoonkologische Betreuung zur Unterstützung der Krankheitsverarbeitung sowie eine sozialmedizinische Beratung angeboten werden.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12.6.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Patienten mit Nierenzellkarzinom soll im Rahmen einer Rehabilitationsmaßnahme eine zielgerichtete Physiotherapie und bei Einschränkungen der Funktionsfähigkeit eine Ergotherapie angeboten werden.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>
Hintergrund

Einleitung

Allgemein gültige Aspekte der fachspezifischen urologischen Rehabilitation wurden aus der interdisziplinären Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms übernommen [510].

Zielsetzung der Rehabilitation

Die Zielsetzung der Rehabilitation lässt sich wie folgt zusammenfassen:

- Diagnostik relevanter Störungen nach Therapie wie z. B. Operationsfolgen oder Chemotherapie-bedingte Nebenwirkungen
- Therapie posttherapeutischer Funktionsstörungen wie z. B. Schmerzen oder operationsbedingter temporärer bzw. dauerhafter neuromuskulärer Störungen
- Bewältigung körperlicher und psychischer Folgestörungen (Coping)
- Wiederherstellung der physischen und psychischen Leistungsfähigkeit
- Verhaltensänderung (Verringerung der Risikofaktoren für eine Niereninsuffizienz)
- Diagnostik und Therapie von Spätkomplikationen
- Wiederbefähigung zur Teilhabe am normalen gesellschaftlichen Leben und, soweit der Patient noch im Berufsleben steht, Erhalt oder Wiederherstellung der Erwerbsfähigkeit
- Beratung zu sozialer Unterstützung

Diagnostik in der Rehabilitation

12.1 Rehabilitation nach Akuttherapie

Therapie posttherapeutischer Funktionsstörungen

Bei Flankenschnitten tritt oftmals eine Muskelrelaxation der Bauchwand, d. h. eine Vorwölbung der Muskulatur durch fehlende, durchtrennte Nervenversorgung auf. Dies ist nicht mit einem Narbenbruch zu verwechseln. Bei dieser Relaxation ist das Training der angrenzenden Muskelgruppen von ganz besonderer Bedeutung, um dem Rumpf wieder genügend Halt zu geben.

Ein körperliches Training verbessert die Blutversorgung im Wundbereich und beschleunigt so den Abbau von Restblutergüssen oder Schwellungen, so dass eine bessere Wundheilung erfolgt. Dabei ist auf eine an die aktuelle Phase der Wundstabilisierung angepasste Übungsintensität zu achten.

Lagerungsbedingte Paresen peripherer Nerven wie z. B. eine Peronaeusparese oder die Schädigung des Plexus brachialis (6 % bei roboterassistierten Nierentumoroperationen) werden in der Reha mit gezielter Physiotherapie und Elektrotherapie (Interferenzstrom oder diadynamischer Strom) behandelt. In der Regel sind sie innerhalb eines Monats bei 59 % der Patienten und nach 1 bis 6 Monaten bei 77 % beseitigt. Bei 23 % persistieren die Paresen über ½ Jahr hinaus [616].

Körperlicher Aufbau

Zum allgemeinen körperlichen Aufbau (allgemeine Roborierung und Aufschulung der Muskulatur sowie Verbesserung des Allgemeinzustands) kommen je nach Indikation und Leistungsfähigkeit des Patienten zum Einsatz:

- Bewegungstherapie mit Ausrichtung auf Ausdauer, Kraft und/oder Koordination einzeln oder in der Gruppe (z. B. Bewegungsbad, Crosstrainertraining, Ergometertraining liegend/sitzend oder Handkurbelergometer)
- Gerätetraining
- Schwimmen
- Walking/Nordic Walking
- Wassertreten

Ein reduzierter Allgemeinzustand (z. B. durch Therapie und Postaggressionsstoffwechsel) sollte nach der AHB oder Rehabilitation deutlich gebessert sein. Der Muskelaufbau nach großen Eingriffen dauert selbst bei intensivem Training bis zu einem halben Jahr. Durch die intensiven bewegungstherapeutischen Übungen während der Rehabilitation wird dieser Vorgang beschleunigt und der Patient für ein eigenes Training zu Hause geschult und motiviert.

Allgemeine Prophylaxemaßnahmen

Zur Durchführung bzw. Vermittlung von immunstimulierenden und allgemein prophylaktischen bzw. protektiven Maßnahmen kommen zum Einsatz:

- Balneotherapie,
- Wärmepackungen von Schulter und Nacken, Kohlensäurewannenbäder, Wassertreten, Wechselgusse der Beine (bei Varicosis und/oder Ödemen der Arme),
- Bewegungstherapie (siehe Punkt „körperlicher Aufbau“),
- Ernährungsumstellung (mit pflanzlichen Lektinen angereicherte und in ihrem Gehalt an tierischen Fetten reduzierte, immunmodulierende Kost, bei männlichen Rehabilitanden Einbezug der Lebenspartner wünschenswert), ausreichende Trinkmenge,
- Vermeiden von Risikofaktoren (z. B. metabolisches Syndrom, Rauchen, übermäßiger Alkoholgenuss, entsprechende Impfungen nach Splenektomie),
- Umstellung des Sozialverhaltens bei Bedarf (Erreichen einer positiven Stimmungslage und damit einer Immunstimulation im Sinne der Psychoneuroimmunologie).

Es erfolgt eine Beratung durch Urologen, Nephrologen, Sporttherapeuten, Physiotherapeuten, Ergotherapeuten, Diätassistenten und Psychologen über allgemeine persönliche Verhaltensweisen (Risikovermeidung durch entsprechendes Verhalten), Stabilisierung der Nierenfunktion und Hinweise auf ein Rezidiv, ergänzt durch das Erlernen von Entspannungstechniken wie der progressiven Muskelrelaxation nach Jacobson zur Stressbewältigung.

Schulungen zur Optimierung des Trinkverhaltens nach Nierenteil- oder Nierenverlust, zur Ernährung bei Darmfunktionsstörungen (Obstipation, Flatulenz etc.) und/oder bei eingeschränkter Nierenfunktion (Kreatininwerte > 2 mg%) und zum persönlichen Sozialverhalten sowie zu dem Erlernen von Entspannungstechniken beschleunigen den Genesungsprozess des Patienten.

Durch die genannten Maßnahmen soll das temporäre Immundefizit nach Operationen oder Chemotherapie behoben bzw. verringert werden. Darüber hinaus soll der Patient
befähigt werden im Alltag die Risikofaktoren, insbesondere für eine Niereninsuffizienz, zu vermeiden.

Diagnostik und Therapie postoperativer Spätkomplikationen

Hier kommen z. B. Gefäßverletzungen, Infektionen, Nierenfunktionsstörungen und Stoffwechselentgleisungen (Acidose) bei Niereninsuffizienz in Frage.

Sozialberatung

Im Vordergrund stehen die Einleitung von Leistungen zur Teilhabe am Arbeitsleben, Hilfen zur beruflichen Rehabilitation, Fragen zur wirtschaftlichen Sicherung, die Beratung zur Wahrnehmung der Nachsorge und zu Rentenfragen sowie Beratung und Vorträge zu sozialrechtlichen Themen wie z. B. zur Schwerbehinderung.

Somato-psychischer Gesundungsprozess

Ein Teil dieser Probleme kann auch im Verlauf bestehen bleiben, so dass dann die Indikation zu einer medizinischen Rehabilitation ein oder zwei Jahre nach Primärtherapie besteht.

Temporäre Nierenfunktionsstörungen sind normalerweise 3-6 Monate postoperativ kompensiert, ansonsten durch vorbestehende Erkrankungen der Restniere als Dauerschädigung zu betrachten.

Zum Ende der Rehabilitation werden die physischen und psychischen Befunde aktualisiert, beurteilt, dem Patienten mitgeteilt und im Reha-Entlassungsbericht den behandelnden Ärzten berichtet [620-622].

Hintergrund Empfehlung 12.1, 12.2 und 12.3

der fachspezifischen Rehabilitation profitieren. Die Rehabilitationsmaßnahme wird aktuell in der Regel stationär durchgeführt [620, 623].

Im IX. Buch des Sozialgesetzbuches (SGB IX) wird das Recht auf Rehabilitationsleistungen gesetzlich geregelt. Es besteht ein gesetzlicher Anspruch auf Leistungen zur Teilhabe (§ 4) mit dem Ziel, bestehende oder drohende Behinderung, Einschränkung der Erwerbsfähigkeit oder Pflegebedürftigkeit abzuwenden, zu beseitigen, zu mindern, Verschlimmerung zu verhüten, Folgen zu mildern, andere Sozialleistungen zu vermeiden/zu mindern, die Teilhabe am Arbeitsleben und am Leben in der Gesellschaft zu sichern oder zu erleichtern, die persönliche Entwicklung ganzheitlich zu fördern und eine möglichst selbstständige und selbstbestimmte Lebensführung zu ermöglichen [624].

Neben der urologisch ausgerichteten AHB/AR in zeitlicher Nähe zum akutstationären Aufenthalt können Leistungen zur medizinischen Rehabilitation als onkologische Rehabilitationen erbracht werden (SGB VI, § 31, Satz 1.3) [625]. Diese Leistungen werden in der Regel für längstens drei Wochen bewilligt. Sie können für einen längeren Zeitraum erbracht werden, wenn dies erforderlich ist, um das Rehabilitationsziel zu erreichen (SGB VI § 15, Satz 3) [626]. Dem Wunsch- und Wahlrecht der Patienten zur Auswahl einer Reha-Einrichtung wird dabei möglichst Rechnung getragen (SGB IX, § 9) [627].

Hintergrund Empfehlung 12.4

Der Arbeitskreis Rehabilitation urologischer und nephrologischer Erkrankungen der Akademie der Deutschen Urologen hat notwendige strukturelle Voraussetzungen (personelle, räumliche und technische Ausstattung) und Merkmale der Prozessqualität zur Durchführung einer urologischen Rehabilitation formuliert, um die Ergebnisqualität zu sichern [628]. Anhand der Aufnahmebefunde wird ein multimodulares, differenziertes Programm zur Diagnostik und Therapie erstellt, das geeignet ist, krankheits- und therapiebedingte Defizite festzustellen und zu überwinden. Urologische Fachkompetenz ist dabei hinsichtlich diagnostischer und therapeutischer Optionen und Nachbehandlungskonzepte erforderlich, da postinterventionelle Funktionsstörungen und behandlungsspezifische Komplikationen wie Wundinfektionen, Nachblutungen, Abszesse und Harnverhalt einer unmittelbaren fachärztlichen Diagnostik und Behandlung bedürfen [629].

12.1 Rehabilitation nach Akuttherapie

Hintergrund Empfehlung 12.5

Eine Therapie psychoonkologischer Probleme wie z. B. bei Rezidivängsten, Selbstvorwürfen, Anpassungsstörungen, Schlafstörungen, zwischenmenschlichen Problemen, Stimmungsschwankungen und Konzentrationsstörungen dient zur psychischen Stabilisierung und besseren Verarbeitung der krankheits- und therapiebedingten Problematik. Für weitergehende Informationen und Handlungsempfehlungen wird auf die S3-Leitlinie zur Psychoonkologischen Versorgung von Krebspatienten verwiesen [530].

Eine akute somato-psychische Belastungsreaktion (Depressivität) tritt generell bei ca. 25 % der Tumorpatienten auf, bei Patienten mit einem Nierentumor in mehr als der Hälfte der Fälle [630].

Beeinträchtigungen betreffen vor allem folgende Bereiche: körperliche Probleme (Symptome, Schmerzen, Verlust der körperlichen Integrität), Funktionsstörungen (Einschränkung der Leistungsfähigkeit, Infragestellung sozialer Rollen), emotionales Wohlbefinden und soziale Partizipation [530, 633, 634] [Faller et al. 2013].

Art und Ausmaß der individuellen Belastung sind dabei nicht nur von Krankheitsfaktoren abhängig, sondern auch von Personen- und Umgebungsfaktoren wie individuellen Ressourcen, Krankheitsverarbeitungsstrategien und von dem Ausmaß an sozialer Unterstützung [635].

Wesentlich ist die frühzeitige Diagnostik von aus Krankheit und Therapie resultierenden oder gleichzeitig auftretenden psychischen Störungen und deren Behandlung [636, 637].

Besonders kritische Phasen im Krankheitsverlauf sind unter anderem die Beendigung der Primärbehandlung und die darauf folgende Zeit des Wartens auf einen langfristigen Therapieerfolg [530, 638]. In dieser Zeit bietet die Rehabilitation Unterstützung für Nierenkarzinompatienten.

Angst, vor allem Progredienzangst, Depressivität und Anpassungsstörungen sind häufige psychische Begleitsymptome einer Krebserkrankung [530]. Dabei ist die subjektive psychische Belastung durchaus unabhängig vom objektiven Befund [639]. Wichtig ist, bei älteren Patienten nach Nierentumoroperation und nach Nierenteilresektion eine intensive Beratung durchzuführen, da sie mehr Rezidivängste aufweisen als jüngere Patienten [640].

Das frühzeitige Erkennen psychischer Störungen in der onkologischen Versorgung und die Bereitstellung eines breitgefächerten und niedrigschwelligen psychosozialen Unterstützungsangebots ist von besonderer Bedeutung, weil komorbide psychische Störungen bei Krebspatienten nicht nur deren Behandlung erschweren, sondern sich auch nachteilig auf die Compliance auswirken und zu schlechteren medizinischen Behandlungsergebnissen führen [641]. Ein solches Angebot kann während der Rehabilitation ermöglicht werden [642]. Für Nierenkarzinompatienten kann eine solche psychosoziale Unterstützung eine wesentliche Hilfe zur Krankheitsverarbeitung darstellen [643]. Eine Metaanalyse psychoonkologischer Studien zeigt, dass psychoonkologische Interventio-
nen psychische Belastungen reduzieren und positive Effekte u. a. auf Angst, Depressio-

nen, Hilflosigkeit, Schmerzen, berufliche Beeinträchtigung, körperliche und soziale

Aktivitäten sowie die Lebensqualität haben [636].

Zur aktiven psychoonkologischen Krankheitsbewältigung kommen dabei während der

Rehabilitation je nach Indikation folgende Maßnahmen zum Einsatz:

- Austausch mit Mitpatienten
- psychologische Einzel- oder Paargespräche
- Gruppengespräche
- Verfahren zur körperlichen und seelischen Entspannung wie die progressive

Muskelrelaxation nach Jacobson (PMR)
- Seminare mit Hinweisen zur Lebensführung nach Nierentumortherapie
- Urologische Beratung, insbesondere zu Prognose und Verlauf
- Bewegungstherapie, Balneo- und Physiotherapie, Ergotherapie

Wichtig ist die Beratung der Patienten, dass 50-80 % nach 12 Monaten die gleiche Le-

bensqualität erreicht haben werden, wie vor der Behandlung [644].

Das Ausmaß der Depressivität ist bei metastatischen Tumoren ein entscheidender Fak-

tor für das Überleben [645], deshalb ist bei depressiven Patienten oft eine weitere psy-

chologische Behandlung am Heimatort angezeigt.

Die Tumorproblematik selbst wird nach Beratung und Therapie von Beschwerden nach

der Rehabilitation psychisch in der Regel gut bewältigt. Dabei spielt die Erarbeitung

und Bestimmung neuer Lebensinhalte und –ziele eine wichtige Rolle [620].

Sozialmedizinische Beratung

Es soll zum Ende der fachspezifischen urologischen Rehabilitation eine sozial-

medizinische Beratung mit entsprechender Dokumentation im Arztbrief unter beson-

derer Berücksichtigung der Leistungsfähigkeit, ggf. mit Ausblick auf die zu erwartende

weitere Entwicklung gemäß der folgenden Vorgaben durchgeführt werden:

Positives Leistungsbild

Mittelschwere bis gelegentlich schwere körperliche Arbeiten (Lasten bis 40 kg) über

6 Stunden sind nach einer Heilungsphase von 3 Monaten in der Regel möglich. Die

Gehstrecke ist nicht eingeschränkt. Bei Niereninsuffizienz ist je nach Ausprägung zu

verfahren. In der Regel liegen bei einer Nierenfunktionsstörung neben der (partiellen)

Nephrektomie weitere Zusatzerkrankungen vor.

Beim Nierenzellkarzinomin im Stadium pT4 und bei Vorliegen von Lymphknoten-

metastasen oder Fernmetastasen ist die Leistungsfähigkeit im Erwerbsleben in der Re-

gel auf unter 3 Stunden einzuschätzen.

Negatives Leistungsbild

Bei verbleibender geringfügiger Bauchdeckenparese oder kleiner Bauchdeckenhernie

sind leichte bis gelegentlich mittelschwere körperliche Arbeiten (Lasten bis 15 kg) oh-

ne häufiges Bücken, Heben, Treppensteigen, Arbeiten auf Leitern oder Überkopf-

arbeiten möglich. Gegebenenfalls ist der temporäre Einsatz von Hilfsmitteln (Stütz-

mieder) sinnvoll [617, 618, 646-648].
Hintergrund Empfehlung 12.6

Spezielle funktionsorientierte Krankengymnastik, Bewegungstherapie und medizinische Trainingstherapie stellen obligatorische Komponenten einer fachspezifischen urologischen Anschlussrehabilitation (AHB) oder Tumornachsorgemaßnahme nach Therapie eines Nierenzellkarzinoms dar [620].

Verschiedene randomisierte kontrollierte Studien [649-652] mit 95 Teilnehmern (Mehrzahl der Teilnehmer mit Brustkrebs) berichten von positiven Auswirkungen durch die Ergotherapie, u. a. auf die Begleitsymptomatik, das Stimmungsbild und die Lebensqualität.

12.2. Nachsorge nach Lokaltherapie des Primärtumors im nicht fernmetastasierten Stadium

12.7. Konsensbasierte Empfehlung

EK

Die Nachsorge nach Primärtumortherapie im nicht fernmetastasierten Stadium soll risikoadaptiert erfolgen.

Starker Konsens

12.8. Konsensbasiertes Statement

EK

Neben der pT- und der pN-Kategorie sowie dem Grading definieren Art der Therapie (Resektion vs. ablative Techniken) und R-Status die Zuordnung in verschiedene Risi kogruppen hinsichtlich der Nachsorge.

Starker Konsens
12.2 Nachsorge nach Lokaltherapie des Primärtumors im nicht fernmetastasierten Stadium

<table>
<thead>
<tr>
<th>12.9.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Zur risikoadaptierten Nachsorge von Patienten nach Lokaltherapie des nicht fernmetastasierten Nierenzellkarzinoms sollten angeboten werden:</td>
</tr>
<tr>
<td></td>
<td>• Klinische Untersuchung</td>
</tr>
<tr>
<td></td>
<td>• Bestimmung von Laborparametern</td>
</tr>
<tr>
<td></td>
<td>• Computertomographie (CT)/Magnetresonanztomographie (MRT) des Abdomens/Beckens und CT des Thorax unter Einbeziehung des Knochenfenzters</td>
</tr>
<tr>
<td></td>
<td>• Sonographie</td>
</tr>
</tbody>
</table>

Starker Konsens

<table>
<thead>
<tr>
<th>12.10.</th>
<th>Konsensbasiertes Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Das PET/CT, Schädel-CT und –MRT, konventioneller Röntgen-Thorax sowie die Knochenszintigraphie haben in der Routine-Nachsorge von asymptomatischen Patienten keinen Stellenwert.</td>
</tr>
</tbody>
</table>

Konsens

Hintergrund

Die Entwicklung neuer therapeutischer Optionen in den vergangenen Jahren hat dazu geführt, dass sich auch die Nachsorgestrategien nach Primärtumorthерapie verändert haben.

Ziele der Tumornachsorge sind:

- Detektion von Lokalrezidiven nach nierenerhaltender Chirurgie bzw. ablative Techniken,
- Rezidiven in der kontralateralen Niere,
- Fernmetastasen
- Beurteilung der Nierenfunktion
- Erfassung von Komplikationen der Primärtherapie

12.2 Nachsorge nach Lokaltherapie des Primärtumors im nicht fernmetastasierten Stadium

und kardiovaskulärer Morbidität vom Nierengewebeerhalt. Lokalrezidive nach Nierenteilresektionen treten in weniger als 5 % der Fälle auf. Ihre frühzeitige Diagnose ermöglicht in vielen Fällen ein erneutes nierenerhaltendes Vorgehen [655].

Die Nachsorgeintensität ist anhand des Progressionsrisikos individuell festzulegen. Dabei gilt die Nierenteilresektion bei Tumoren der Stadien pT1a/b N0 wie bereits beschrieben als absolut gleichwertig mit der radikalen Tumornephrektomie und erfordert keine intensivierte Nachsorge [656]. Bei lokal fortgeschrittenen Tumoren bzw. nach ablatischen Therapieverfahren ist eine intensivierte Nachsorge zu empfehlen.

In der metastasierten Situation kann eine frühzeitige Diagnose die Chance einer chirurgischen Resektion von Metastasen verbessern. Jedoch weisen nur etwa 5 % aller Patienten mit Metastasierung eines Nierenzellkarzinoms solitäre bzw. oligolokuläre Befunde auf, die einer Metastasenchirurgie zugänglich wären [657]. Prognostisch relevant ist dabei ein Zeitintervall von mindestens 1 Jahr zwischen Primärtherapie und Metastasierung. Patienten mit früher Metastasierung profitieren weniger vom metastasenchirurgischen Vorgehen [658].

Tabelle 26: Definition der Risikogruppen in der Nachsorge nach Lokaloperation eines Nierenzellkarzinoms

<table>
<thead>
<tr>
<th>Risikogruppe</th>
<th>Charakteristika</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk (geringes Risiko)</td>
<td>pT1a/b cN0 cM0 G1-2</td>
</tr>
</tbody>
</table>
| Intermediate risk (mittleres Risiko) | pT1a/b cN0 cM0 G3
pT2 c/pN0 cM0 G1-2
ablative Therapie bzw. R1-Situation eines ansonsten low risk Karzinoms |
| High risk (hohes Risiko) | pT2 c/pN0 cM0 G3
pT3-4 u./o. pN+ |

Neben der klinischen Untersuchung bildet die Bestimmung von Routine-Laborparametern (Blutbild, Kreatinin, CRP bzw. BSG, vor CT mit Kontrastmittelgabe TSH) die Basis der Tumornachsorge. Diese dienen der Beurteilung der Nierenfunktion sowie der Vorbereitung einer Schnittbilddiagnostik. Spezifische Tumormarker sind für das Nierenzellkarzinom nicht verfügbar, ein Anstieg unspezifischer Entzündungsparameter kann jedoch Hinweise auf die Entwicklung einer metastasierten Erkrankung geben.

Die Skelettszintigraphie, PET/CT und MRT/CT Schädel erscheinen in der Tumornachsorge auch bei Hochrisikopatienten nicht regulär gerechtfertigt. Beim Nachweis jeglicher Metastasierung bzw. klinischem Verdacht auf ossäre Metastasen sollten weiterführende Untersuchungen (entsprechend Kapitel 4) veranlasst werden.

Eine Sondersituation bildet der Zustand nach Nierenteilresektion komplexer Tumoren. Häufig ist nach Versorgung ausgedehnter bzw. zentraler Resektionsdefekte an der Niere die sonographische, aber auch die schnittbildbasierte Differenzierung narbiger Ver-
änderungen von Rezidivtumoren erschwert. Im klinischen Alltag hat sich eine CT oder MRT im Intervall von 8-12 Wochen nach Nierenteilresektion als Basisuntersuchung und Referenz für spätere Befundbeurteilung als hilfreich erwiesen. Die Indikation zu dieser Untersuchung sollte vom Operateur in Abhängigkeit vom intraoperativen Situs gestellt werden und entsprechend der Sonderkennzeichnung (x) im Nachsorgeschema integriert werden.

Tabelle 27: Empfehlung zum Nachsorgeplan für Patienten mit niedrigem Rezidivrisiko

<table>
<thead>
<tr>
<th>Zeitpunkt Untersuchung</th>
<th>3 Mon.</th>
<th>6 Mon.</th>
<th>12 Mon.</th>
<th>18 Mon.</th>
<th>24 Mon.</th>
<th>36 Mon.</th>
<th>48 Mon.</th>
<th>60 Mon.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinische Untersuchung</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Laborwertkontrolle</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Sonographie Abdomen</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>CT Thorax</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT Abdomen</td>
<td>(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 28: Empfehlung zum Nachsorgeplan für Patienten mit mittlerem Rezidivrisiko

<table>
<thead>
<tr>
<th>Zeitpunkt Untersuchung</th>
<th>3 Mon.</th>
<th>6 Mon.</th>
<th>12 Mon.</th>
<th>18 Mon.</th>
<th>24 Mon.</th>
<th>36 Mon.</th>
<th>48 Mon.</th>
<th>60 Mon.</th>
<th>84 Mon.</th>
<th>108 Mon.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinische Untersuchung</td>
<td>X</td>
</tr>
<tr>
<td>Laborwertkontrolle</td>
<td>X</td>
</tr>
<tr>
<td>Sonographie Abdomen</td>
<td>X</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>CT Thorax</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>CT Abdomen</td>
<td>(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Tabelle 29: Empfehlung zum Nachsorgeplan für Patienten mit hohem Rezidivrisiko

<table>
<thead>
<tr>
<th>Zeitpunktuntersuchung</th>
<th>3 Mon.</th>
<th>6 Mon.</th>
<th>12 Mon.</th>
<th>18 Mon.</th>
<th>24 Mon.</th>
<th>36 Mon.</th>
<th>48 Mon.</th>
<th>60 Mon.</th>
<th>84 Mon.</th>
<th>108 Mon.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinische Untersuchung</td>
<td>x</td>
</tr>
<tr>
<td>Laborwertkontrolle</td>
<td>x</td>
</tr>
<tr>
<td>Sonographie Abdomen</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT Thorax</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>CT Abdomen</td>
<td>(x)</td>
<td>(x)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
13. Psychoonkologische Aspekte

Für psychoonkologische Aspekte wird zusätzlich zu den folgenden spezifischen Empfehlungen auf die S3-Leitlinie „Psychoonkologische Diagnostik, Beratung und Behandlung erwachserner Krebspatienten“ im Leitlinienprogramm Onkologie verwiesen http://leitlinienprogramm-onkologie.de/Psychoonkologie.59.0.html.

<table>
<thead>
<tr>
<th>13.1.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Patienten und ihre Zugehörigen sollen im gesamten Krankheits- und Behandlungsverlauf bedarfsorientiert Zugang zu adäquaten Informationen und aufklärenden Gesprächen haben.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13.2.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Das niederschwellige Angebot einer psychosozialen Beratung, Begleitung und Behandlung sollte allen Betroffenen und ihren Zugehörigen in jeder Phase der Erkrankung, auch langfristig, zur Verfügung stehen.</td>
</tr>
<tr>
<td>Konsens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13.3.</th>
<th>Konsensbasierte Empfehlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EK</td>
<td>Während des gesamten Krankheitsverlaufs sollte das psychosoziale Befinden der Patienten regelmäßig erfasst werden.</td>
</tr>
<tr>
<td>Mehrheitliche Zustimmung</td>
<td></td>
</tr>
</tbody>
</table>

Hintergrund Empfehlung 13.1

Hierfür sollte der behandelnde Arzt über psychoonkologische Basiskompetenzen [530] verfügen. Darüber hinaus ist die Integration einer psychoonkologisch geschulten Fachkraft in das Behandlungsteam wünschenswert.

Patientenzentrierte Aufklärungsgespräche und Informationsmaterialien können sich positiv auf Krankheitsverarbeitung, Befinden und Lebensqualität auswirken [664-669]. Im ärztlichen Gespräch sollen die individuellen Wünsche, Sorgen und Bedürfnisse des Patienten erfasst und berücksichtigt werden.

Wenn verfügbar, sollen unterschiedliche Therapieoptionen im Gespräch vermittelt und eingehend erklärt werden, um eine gemeinsam getragene Therapieentscheidung zu ermöglichen [670, 671]. Es sollten Informationen bezüglich der Wirksamkeit, Prognose und möglichen Risiken sowie therapieassoziierter Nebenwirkungen weitergegeben werden. Hier sollten die multidimensionalen Auswirkungen der Erkrankung auf das Leben des Patienten berücksichtigt und auf entsprechende Unterstützungsmöglichkeiten (beispielsweise Selbsthilfegruppen, Möglichkeit, eine Zweitmeinung einzuholen) verwiesen werden.

Hintergrund Empfehlung 13.2

Die Diagnose einer Krebserkrankung gehört zu den intensivsten Lebenserfahrungen und wirkt sich für die Betroffenen und ihre Zugehörigen auf nahezu alle Lebensbereiche (körperlich, psychisch, beruflich, sozial, finanziell, spirituell) in unterschiedlichem Ausmaß aus, beispielsweise durch die damit verbundene und immer wiederkehrende existenzielle Bedrohung und Verunsicherung in allen Phasen der Erkrankung.

Die psychoonkologische Betreuung umfasst eine patientengerechte Information und Beratung, eine qualifizierte psychosoziale Diagnostik sowie das Angebot einer gezielten psychoonkologischen Unterstützung bei der Bewältigung der Erkrankung, der Behandlung und der auftretenden Nebenwirkungen und Folgeproblemen.

Die diagnostische Abklärung sowie die Indikationsstellung für psychoonkologische Interventionen sollten entsprechend der S3-Leitlinie „Psychoonkologische Diagnostik, Beratung und Behandlung erwachsender Krebspatienten“ erfolgen [530]. Dies beinhaltet, dass der Patient frühzeitig nach Diagnosestellung oder im Behandlungsverlauf über die Möglichkeiten psychoonkologischer Hilfestellungen informiert werden sollte.

Hintergrund Empfehlung 13.3

Neben der klinischen Beurteilung durch Ärzte und Pflegende im Rahmen der Anamneseerhebung sollten standardisierte und validierte Screeningverfahren eingesetzt werden, wie beispielsweise die von der Deutschen Krebsgesellschaft empfohlenen Messinstrumente [682-686]. Der Einsatz eines psychoonkologischen Screeninginstruments sollte frühstmöglicher erfolgen und in angemessenen Abständen durchgeführt werden:

- wenn klinisch indiziert oder
- bei Veränderungen des Erkrankungsstatus des Patienten, beispielsweise bei Wiederauftreten oder Fortschreiten der Erkrankung [530, 686].

Hierbei ist zu beachten, dass sich das weitere Vorgehen immer am individuellen Bedarf und den Wünschen des Patienten orientiert [688] und die Zugehörigen in die psychosoziale Beratung und Behandlung eingebunden werden können [530, 686] und psychoonkologische Behandlungsmaßnahmen in das Gesamtkonzept der onkologischen Therapie integriert werden.

Ein interdisziplinärer Informationsfluss sollte sichergestellt werden und durch regelmäßige Rückmeldung mit den an der onkologischen Behandlung beteiligten Berufsgruppen optimiert werden. So können möglicherweise notwendige Hilfestellungen oder Interventionen bedarfsgerecht angeboten werden [686].
14. Qualitätsindikatoren

Tabelle 30: Qualitätsindikatoren

<table>
<thead>
<tr>
<th>Qualitätsindikator</th>
<th>Referenz Empfehlung</th>
<th>Evidenzgrundlage/ weitere Informationen</th>
</tr>
</thead>
</table>

QI 1: Biopsie vor ablativer Therapie

Zähler: Anzahl Patienten mit Diagnosesicherung durch Stanzzylinderbiopsie vor ablativer Therapie (RFA o. Cryoablation)

Nenner: Alle Patienten mit Erstdiagnose eines Nierenzell-Ca und ablativer Therapie (RFA o. Cryoablation)

4.4 Eine Biopsie soll vor ablativer Therapie durchgeführt werden.

Qualitätsziel: Möglichst häufig Diagnosesicherung mit Stanzbiopsie vor ablativer Therapie.

EK

QI 2: Biopsie vor systemischer Therapie

Zähler: Anzahl Patienten mit Histologie vor systemischer Therapie

Nenner: Alle Patienten mit Nierenzell-Ca und systemischer Therapie

4.6 Wenn bislang keine histopathologische Sicherung eines Nierenzellkarzinoms und des Subtyps vorliegt, soll eine Biopsie aus dem Primarius oder einer Metastase vor systemischer Therapie erfolgen.

Qualitätsziel: Möglichst häufig Diagnosesicherung mit Histologie vor systemischer Therapie.

EK
QI 3: Histologischer Typ nach aktueller WHO-Klassifikation

Zähler:
Anzahl Pat. mit Befundberichten mit:
- Klassifikation nach WHO u.
- Vancouver-Klassifikation u.
- Staging nach TNM

Nenner:
Alle Pat. mit Nierenzell-Ca und Histologie

<table>
<thead>
<tr>
<th>Qualitätsziel</th>
<th>Evidenzgrundlage/ weitere Informationen</th>
</tr>
</thead>
</table>

Anmerkungen:

QI 4: Tumorgrad nach Fuhrman

Zähler:
Anzahl Patienten mit Angabe des Tumorgrads nach Fuhrman im histologischen Befund

Nenner:
Alle Patienten mit klarzelligen oder papillären Nierenzell-Ca.

<table>
<thead>
<tr>
<th>Qualitätsziel</th>
<th>Evidenzgrundlage/ weitere Informationen</th>
</tr>
</thead>
</table>
Qualitätsindikatoren

<table>
<thead>
<tr>
<th>Qualitätsindikator</th>
<th>Referenz Empfehlung</th>
<th>Evidenzgrundlage/ weitere Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>QI 5: R0-Resektion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zähler: Anzahl Pat. mit R0-Resektion</td>
<td>6.10 Bei der Nierentumorentfernung soll eine R0-Resektion erfolgen.</td>
<td>Qualitätsziel: Möglichst häufig R0-Resektion. EG A, LoE 3</td>
</tr>
<tr>
<td>Nenner: Alle Pat. mit Erstdiagnose eines Nierenzell-Ca und operativer Resektion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QI 6: Nephrektomie bei pT1		
Zähler: Anzahl Patienten mit Nephrektomie	6.15 Lokal begrenzte Tumoren im klinischen Stadium T1 sollen nierenerhaltend operiert werden.	Qualitätsziel: niedrig Möglichst selten Nephrektomie bei pT1. EG A, LoE 3
Nenner: Alle Patienten mit Erstdiagnose eines Nierenzell-Ca pT1		

<p>| QI 7: Zahnärztliche Untersuchung vor Bisphosphonat/Denosumab-Therapie | | |
| Zähler: Anzahl Pat. mit zahnärztlicher Untersuchung vor Beginn der Therapie | 11.3 Zur Prävention von Kieferosteonekrosen soll eine zahnärztliche Untersuchung und evtl. zahnärztliche Sanierung sowie eine Unterweisung in Mundhygiene vor Beginn der medikamentösen Therapie mit Bisphosphonaten oder Denosumab erfolgen. | Qualitätsziel: Möglichst häufig zahnärztliche Untersuchung vor Beginn der Therapie mit Bisphosphonat- oder Denosumab EG A, LoE 3+ |
| Nenner: Alle Patienten mit NierenzellCa und Bisphosphonat- oder Denosumab-Therapie | | |</p>
<table>
<thead>
<tr>
<th>Qualitätsindikator</th>
<th>Referenz Empfehlung</th>
<th>Evidenzgrundlage/ weitere Informationen</th>
</tr>
</thead>
</table>
| **QI 8: Zwei-Jahres-Überleben metastasiertes Nierenzellkarzinom** | 2 Year Survival Metastatic Kidney Cancer | **Qualitätsziel:** >=50%
Zähler: Anzahl lebende Patienten im Jahr vor Erfassungsjahr
Nenner: Alle Patienten mit Erstdiagnose eines metastasierten Nierenzell-Ca 3 Jahre vor Erfassungsjahr
Z: Number of patients with metastatic cancer at diagnosis for whom at least 2 years have elapsed since diagnosis who are alive 2 years after diagnosis
N: Number of patients with metastatic cancer at diagnosis for whom at least 2 years have elapsed since diagnosis
Quelle: NHS (UK)
http://www.londoncancer.org/media/61502/quality-performance-indicators-010813.pdf (Stand 29.06.2015) |

| **QI 9: 30-Tage-Mortalität nach Intervention** | 30 Day Mortality After Surgery or Ablation | **Qualitätsziel:** <5%
Zähler: Anzahl Patienten, die innerhalb von 30 Tagen postinterventionell verstorben sind
Nenner: Alle Patienten mit Erstdiagnose eines Nierenzell-Ca mit Nierenteilresektion oder ablative Therapie (RFA, Kryotherapie) als Ersttherapie
Z: Number of patients who undergo minimally invasive or operative treatment as first treatment who die within 30 days
N: All patients who undergo minimally invasive (RFA, cryotherapy, SACT) or operative treatment as first treatment for RCC.
Zielvorgaben: < 5% (This target reflects the fact that death from any cause, rather than death from renal cancer is being measured by this indicator.)
Quelle: Scottish Cancer Taskforce. Renal Cancer Clinical Quality Performance Indicators. Published: January 2012. Updated: December 2014 (v2.1)Published by: Healthcare Improvement
http://www.healthcareimprovementscotland.org/his/idoc.ashx?docid=211c7043-6d86-4417-acee-3296e0bfb7bd&version=-1 (Stand: 29.06.2015) |
15. Tabellenverzeichnis

Tabelle 1: Beteiligte Fachgesellschaften und Organisationen ... 8
Tabelle 2: Arbeitsgruppen und deren Mitglieder ... 10
Tabelle 3: Schema der Evidenzgraduierung nach SIGN .. 19
Tabelle 4: Schema der Empfehlungsgraduierung .. 20
Tabelle 5: Konsensusstärke .. 20
Tabelle 6: VEGF-Inhibitoren .. 85
Tabelle 7: mTOR-Inhibitoren ... 85
Tabelle 8: Prognosekriterien zur Bestimmung der Risikogruppe [111] .. 86
Tabelle 9: Prognose nach Risikogruppe [111] ... 86
Tabelle 10: Systemtherapieoptionen gemäß Risikoprofil in der Erstlinientherapie 86
Tabelle 11: Systemtherapieoptionen gemäß Vortherapie in der Zweitlinientherapie 87
Tabelle 12: Ergebnisse der Zulassungsstudie AXIS ... 88
Tabelle 13: Ergebnisse der Zulassungsstudie AVOREN ... 88
Tabelle 14: Ergebnisse der Phase-III-Studie der Cancer and Leukemia Group B (CALGB) 89
Tabelle 15: Ergebnisse der Zulassungsstudie RECORD-1 ... 90
Tabelle 16: Ergebnisse der Zulassungsstudie VEG105192 ... 91
Tabelle 17: Ergebnisse der Phase-III-Studie COMPARZ .. 91
Tabelle 18: Ergebnisse der Zulassungsstudie TARGET .. 92
Tabelle 19: Ergebnisse der Zulassungsstudie NCT00098657 .. 93
Tabelle 20: Ergebnisse der Zulassungsstudie ARCC .. 94
Tabelle 21: Studien zur extrakraniellen Oligometastasierung beim Nierenzellkarzinom nach de Meerleer et al. [374] ... 109
Tabelle 22: Retrospektive Studien zur Überlebensrate nach Lungenmetastasektomie 113
Tabelle 23: RPA-Klassen und Prognoseschätzung nach Gaspar et al. ... 120
Tabelle 24: GPA-/Sperduto-Index für Summenscorebildung .. 120
Tabelle 25: GPA-/Sperduto-Index und Prognose ... 121
Tabelle 26: Definition der Risikogruppen in der Nachsorge nach Lokaloperation eines Nierenzellkarzinoms ... 161
Tabelle 27: Empfehlung zum Nachsorgeplan für Patienten mit niedrigem Rezidivrisiko 162
Tabelle 28: Empfehlung zum Nachsorgeplan für Patienten mit mittlerem Rezidivrisiko 162
Tabelle 29: Empfehlung zum Nachsorgeplan für Patienten mit hohem Rezidivrisiko 163
Tabelle 30: Qualitätsindikatoren .. 167
16. Literaturverzeichnis

16 Literaturverzeichnis

478. Wood, C., et al., An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell

560. KG, G.G.C., Fachinformation Votrient/Pazopanib. Germany.

http://www.nccn.org/professionals/physician_gls/f_guidelines.asp#supportive

http://dx.doi.org/10.1007/s11800-007-0063-3

