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4.6.1 Learning objectives
To have a basic understanding of some modelling methods that might be 
applied in research studies relevant to the following issues for health 
emergency and disaster risk management (Health EDRM):

1. Short-term environmental health associations.
2. Factors associated with the uptake of protection behaviours.
3. Trends of influenza.
4. Health-related vulnerability index.

4.6.2 Introduction 
Health EDRM is an important approach for reducing the numerous public 
health impacts of disasters and emergencies (Chapter 1.2). Other chapters 
in this book describe research methods that require the collection of new 
data in prospective studies; this chapter complements these by discussing 
the use of statistical modelling to establish mathematical associations 
between variables. The chapter focuses on health-related risk models that 
are applicable to Health EDRM and discusses models for four particular 
topics: short-term environmental health associations; factors associated 
with the uptake of protection behaviours; trends in influenza; and health-
related vulnerability index.
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4.6.3 Models for evaluating short-term 
environmental health associations 
Hydrometeorological hazards (that is, hazards related to water and 
weather-related events) are common triggers of disasters and account for 
about 95% of the people affected by disasters caused by natural hazards 
in the past 50 years (1). Climate change is causing these extreme events to 
become more common and severe, leading to further impacts on human 
health. Improved weather forecasting and better understanding of the 
health risks of extreme environmental events is allowing for the 
implementation of effective health protection plans and improvements in 
resource allocation. These are supported by modelling methods for 
evaluating short-term associations between environmental exposures and 
health outcomes, and this section uses ambient temperature as an 
example to illustrate this. Extreme temperatures are a silent killer, due to 
people‘s lower awareness compared to other hazards (2), and have caused 
substantial public health problems (3-7). 

Similar to other environmental exposures (air-pollutants, storms, for 
example), ambient temperature usually has a short-term association with 
health outcomes, ranging from hours (8) to weeks (9), depending on the 
degree of exposure and the health outcome considered. A delayed effect 
is commonly reported for the temperature-health association, but it is not 
always linear. For instance, since both extreme high and low temperature 
may cause adverse effects on human health, there may be a v-shaped 
association between ambient temperature and the risk of adverse health 
outcomes. Combined with a seasonal effect and some other confounding 
effects (such as air-pollutants and population-level demographic factors), 
the estimation of a temperature-health association is complicated. A time 
series design is the most common method to reveal these short-term 
temperature-health associations (10).

Time series data are a series of sequential records in equal time units, such 
as the number of deaths and the average daily or weekly temperature 
within a specific time period. Bhaskaran and colleagues discussed and 
compared time series designs used in environmental epidemiology, 
identifying three main types of time series study: time stratified model, 
periodic functions and flexible spline functions (11). 

For the time stratified model, exposure and outcome are associated in 
stratified time units. Time intervals are indicated by indicator variables 
(such as time period: 1, 2, up to “n”) instead of the true date record. This 
type of model is relatively easy to understand but many parameters are 
included in the model and it cannot facilitate the calculation of the 
continuous effect from one time unit to another (11). 

Periodic functions (Fourier terms) model exposure and outcome by using 
periodic functions such as sine and cosine function to represent the 
periodic characteristics (such as calendar months). This model type 
creates smooth predictions but the period of the pattern is fixed, and this 
might not be appropriate for representing trends that are mathematically 
complicated and do not have a fixed pattern (11). 

Flexible spline function is a modelling approach combining different 
polynomial curves (11–12). This design is most commonly applied in 
assessing short-term associations between temperature and health 
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outcomes (13–14). It allows the health outcome to be linked to a number of 
exposures with different non-linear associations at the same time. This is 
an important feature, because most temperature-outcome associations 
and long-term trends are non-linear and non-periodical. Another reason for 
using a flexible spline to model long-term trends is that it helps control the 
long-term demographic factors at a population level. For example, smoking 
is a potential confounder of the risk of admissions to hospitals for 
breathing problems when studying the association with temperature but, 
because the proportion of people in a population who smoke does not 
change significantly from day to day, it does not affect the daily association 
between temperature and these admissions. Therefore, overall changes in 
the proportion of smokers can be captured by fitting a spline function for 
the long-term trend. 

To incorporate the non-linear delayed effects of ambient temperature on 
health outcomes into the spline model, Armstrong (15) and Gasparrini (16) 
introduced the Distributed Lagged Non-linear Model (DLNM) and the 
corresponding R package dlnm, respectively. This modelling approach is a 
three-dimensional data analysis. It considers the exposure, health outcome 
and the delay (time) dimension at the same time. In DLNM, spline functions 
can also be applied on the time dimensions, thereby addressing the need 
to model the non-linear delayed effect in exposure-outcome associations. 
The combination of flexible spline approach and DLNM tackles most of the 
concerns when evaluating short-term environmental health associations 
but is complicated because it involves one more dimension than other 
traditional time series designs. Similar to other time series approaches, the 
problem of effect modification by other factors (such as age and gender) 
still exists and needs to be handled separately (for example, by conducting 
subgroup analysis). More details about the method and some examples 
are available elsewhere (17).

4.6.4 Identifying factors associated with the 
uptake of protective behaviours during extreme 
events 
Applying appropriate protective behaviours during extreme events can 
lower exposure to hazards and hence reduce health risk. 
Sociodemographic factors (19) and knowledge, attitude and practice (KAP) 
(20-21) are common examples of determinants of health behaviours. 
Identifying associated sociodemographic factors and understanding KAP 
for a protective behaviour provides evidence to support health promotion 
policies. This section introduces a statistical method for identifying factors 
associated with the uptake of protective behaviours, using data collected 
from a cross-sectional KAP survey.

Logistic regression is a regression model characterized by one binary 
dependent variable (outcome) and multiple independent variables 
(explanatory variables) (22). It allows users to investigate the association 
between the outcome variable and an explanatory variable with adjustment 
for other confounders. It is used widely for identifying factors (such as 
knowledge and gender) that might be associated with the likelihood of a 
group of people acting in a certain way (taking or not taking action, for 
example) and comparing this to a reference group of other people. 
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In Health EDRM, there are usually several explanatory variables to consider 
but including too many explanatory variables in the model compromises its 
power to reveal the real associations. A general guide is that there should 
be at least ten cases for each explanatory variable in each outcome group 
(22) and the power increases with increasing numbers of cases. To reduce 
the number of explanatory variables in a regression model, univariate 
analysis, such as the chi-square test (for categorical variables) and t-test 
(for continuous variables), can be used to provide a quick assessment of 
the potential associating factors. Explanatory variables showing potential 
association with the outcome in the univariate analysis, together with 
some core explanatory variables (supported by literature or hypothesis) are 
then entered into the logistic regression model. Model selection (the 
process of selecting explanatory variables for a model) can also be done 
by removing non-significant variables from a full model or adding variables 
and keeping those that are significant (see Case Study 4.6.1).

Case Study 4.6.1  
Data collection by telephone survey

For a community with a high level of landline telephone penetration, data 
collection through a telephone survey might be an appropriate way to 
examine knowledge, attitude and practice (KAP) in community behaviour 
patterns. A population-based telephone survey among the Hong Kong 
population investigated their weather information acquisition pattern 
during an intense cold spell (23). The Chi-square test and a logistic 
regression model were used to identify independent associated factors in 
a two-stage analysis. Univariate analyses were used to identify potential 
associated factors with the outcome and factors with a p-value from the 
chi-square test of less than 0.20 were entered to the second stage of the 
analysis, the multiple logistic regression analysis, to assess their 
independent association with the outcome. In the univariate analyses, 
educational attainment, age and marital status were significantly 
associated with current use of smartphone apps to acquire weather 
information. In multiple logistic regressions, only older age and lower 
education level remained significantly associated with lower smartphone 
app usage.

4.6.5 Prediction and forecasting of influenza trend
Influenza is a global public health burden, usually associated with cold-like 
symptoms but leading to serious illnesses in vulnerable groups (for 
example, young children and the elderly) (24). Influenza causes health and 
economic burdens, with loss of work or school hours for patients and 
caretakers, large numbers of emergency room visits, hospitalizations and 
deaths (25–27). Influenza viruses gradually mutate and when a new 
contagious strain emerges in a community without immunity, this may lead 
to an epidemic. To reduce the risk of disease outbreak and disease burden, 
accurate prediction of strain types and the number of cases is important 
for primary prevention strategies. Accurate prediction facilitates effective 
vaccine strain selection and resource planning for the healthcare sector, 
and various prediction models have been developed to meet different 
purposes and region-specific environmental conditions. This section 
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introduces predictive models for vaccine selection and the forecast of 
influenza activity (28–30).

Vaccine selection is conducted annually, in general, and is a year-long 
process because of the long production time for the vaccines (approximately 
6 to 8 months). The process is managed collaboratively between WHO and 
professionals around the world, supported by global surveillance data 
related to influenza virus circulating in humans (29). Employing present and 
past data, predictive models are used to identify and predict emerging 
influenza clades (that is, groups of virus strains that are believed to comprise 
of evolutionary descendants of a common virus ancestor) that may be 
dominant in the following year. Most of the predictive models focus on the 
biological determinants of the evolution of influenza, with scale from 
molecular, within-host, population, regional to global level. Some models 
infer phenotypic properties of the current population (29). 

Antigenicity-stability fitness model (31), Epitope Clade Growth (32) and 
Local Tree Shape (33) are probabilistic evolutionary focused models for 
predicting future viral populations (29). Antigenicity-stability fitness model 
is a validated model estimating expected growth rate (fitness) of viral 
clades by input of a few years of genetic and antigenic data and is able to 
predict frequency of trajectory of clades for about one year ahead (31). 
Epitope Clade Growth, a model based on genealogical tree, estimates 
antigenic differences by extrapolating recent growth hemagglutinin clades 
seeded by epitope mutation (32). Local Tree Shape is another genealogical 
tree-based model. It estimates recent clade growth from information 
stored in the local shape of a hemagglutinin genealogical tree (33).

Linking antigenic properties and genetic data, and identification of 
proposed vaccine strains are two ways of inferring phenotypic properties 
(29). They estimate the effectiveness of current vaccines for the emerging 
influenza strains and identify new antigenic variants at an early stage of 
expansion (29). Strain selection involves complex decisions that require the 
integration of the results from different models at different scales. 
Integration and interpretation of data for decisions are key challenges (29).

Forecasts of influenza activity have been conducted worldwide to support 
preparedness activities (28, 30). These forecasts can be based on single or 
multiple measures. Typical measures are peak periods (time), peak and 
outbreak magnitude and case counts by day or week (30). 

There are two main modelling approaches: (i)  statistical models without 
consideration of the epidemiology process and (ii) epidemiological models 
(28). The common statistical models are time series models, generalized 
linear models, Bayesian network and classification methods (28). The 
susceptible-infections-removed (SIR) models and agent-based models 
(AMBs), which include exposure, infection, transmission and behaviours in 
the calculations, are the common epidemiological approaches for 
forecasting influenza activity (28). Agent-based models can be operated by 
simulation algorithm to estimate key epidemiological parameters and then 
to forecast future activity (see Case Study 4.6.2). While time series models 
can capture the temporal dependence of health outcomes, 
epidemiological approaches are able to account for health-related human 
behaviours and address questions related to the impact of prevention 
measures on health. Dynamic virological data and syndromic influenza-like 
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illness are common input data for surveillance data forecast models (28). 
Real-time forecast models, making use of retrospective forecast 
information have been developed for temperate regions, with seasonal 
winter epidemics such as the USA (34–35). However, these real time 
models performed less well in subtropical regions, such as Hong Kong 
SAR, with a two peak or year-round pattern (36).

Case Study 4.6.2  
Forecast Model - Simulation Optimization (SIMOP)

Nsoesie and colleagues (37) introduced a simulation optimization 
(SIMOP) approach for forecasting influenza epidemic infection curves. 
This combines the individual-based epidemiology model and the 
optimization technique for model parameters estimation (Nelder-Mead 
simplex method). The three model parameters estimated were the 
disease transmissibility, incubation and infectious period distribution. The 
individual-based model consisted of a dynamic social contact network 
(representing Montgomery County in Virginia, Miami, Seattle and 
surrounding metropolitan regions of the USA) and a disease model with 
the several assumptions.

There were three main steps for the SIMOP: (i) initialize the individual-
based model and the Nelder-Mead simplex method, (ii) run the Nelder-
Mead algorithm to find new parameter sets, and (iii) simulate an epidemic 
using the proposed parameter set and evaluate the objective function. 
Steps 2 and 3 were repeated for convergency. The input measures were 
the sequential daily or weekly number of cases during the period of 
epidemic, which were simulated by the estimated disease transmissibility, 
incubation and infectious period distribution. The model was used to 
forecast the epidemic peak timing, counts of infected individuals and 
cumulative infected individuals. 

The model predicted the peak time at seven weeks before the actual peak. 
Forecasting the peak count of infected and cumulative infected individual 
was more challenging because of the possibilities of the epidemic curve 
trajectories, but the forecast was found to be accurate for Montgomery 
County.

4.6.6 Compositing indicators/index to measure 
vulnerability 
Climate change is set to increase the frequency and intensity of disasters 
due to natural hazards (38). Risk assessment tools are important for saving 
lives and reducing losses in disasters. During disasters, the number of 
deaths, the number of people affected and economic loss are not only 
determined by the hazard itself, but also by the proportion of population 
exposed and the vulnerability of the community (Chapter 1.3). 
Understanding risk in all its dimensions is essential for effective Health 
EDRM, and as such, the collection of large volumes of data is a major focus 
of research and public interest, because it presents opportunities to 
describe reality accurately (Chapter 2.4). However, although large amounts 
of data provide information from many perspectives,there may be too many 
variables for a clear understanding. This problem is sometimes known as 
the “curse of dimensionality”. 
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If there are a large number of variables in a dataset, a dimension reduction 
method can be applied. This maps the numerous original variables into 
fewer independent dimensions, based on their correlation to each other. It 
is therefore more meaningful to summarize data as a few independent 
dimensions, while preserving as much of the original information as 
possible (39).

On some occasions it is easier to interpret one composite index resulting 
from dimension reduction, rather than indicators from multiple 
perspectives, despite the simplification of the original data. A composite 
index can allow multi-country comparisons for complex issues, such as 
society development, vulnerability to environmental hazards and urban 
heat islands. A good quality composite index is based on careful variable 
selection and appropriate use of the dimension reduction method, and can 
facilitate communication and policy making.

Principal components analysis (PCA) and factor analysis (FA) are two 
examples of linear dimension reduction methods. They attempt to explain 
a multivariate dataset by reducing them into a smaller number of 
dimensions. PCA is one of the oldest multivariate techniques and is useful 
for displaying multivariate data as a set of dimensions (called ‘principal 
components’). It simplifies the complexity by transforming correlated 
variables into a set of uncorrelated principal components (40). Each 
principal component is rated according to the extent to which it represents 
the original dataset, and most of the information from the original variables 
is captured by the principal components rated the highest (see Case Study 
4.6.3). In summary, PCA  provides a concise summary of the original 
variables, with no probabilistic or statistical assumptions.

Case Study 4.6.3  
Principal components analysis (PCA) to develop a Heat 
Vulnerability Index

PCA was used to combine socioeconomic indicators into a Heat 
Vulnerability Index in London, United Kingdom (41). Nine variables were 
identified: households in rented tenure, households in a flat, population 
density (persons/hectare), households without central heating, population 
above 65 years old, population with self-reported health status, receiving 
any kind of social benefit, single pensioner households and ethnic group. 
These were included in the principal components analysis. Four principal 
components were then identified, which could be interpreted as high-
density housing, poor health and welfare dependency, being elderly and 
isolated, and poor housing quality. Principal component loadings are 
weighted according to the variance they explain and summed to form the 
Heat Vulnerability Index. In this way, the number of independent factors 
(dimensions) associated with the outcomes could be decreased and 
interpretation of the findings was simplified.

If statistical assumptions are added into principal components analysis, the 
principal components analysis becomes a factor analysis (42). The results 
from principal components analysis and factor analysis would not differ 
dramatically if the specific variances added are small. Like principal 
components analysis, factor analysis is a classical technique used to 
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derive fewer dimensions from a large set of variables. However, unlike 
principal components analysis, factor analysis can allow for further 
statistical inference and support assertions about a population (see Case 
Study 4.6.4). Although the use of factor analysis draws considerable 
criticism (due to the lack of uniqueness of the factor loadings, for example), 
it is a useful approximation for the truth and a suitable starting point for 
further investigation.

Case Study 4.6.4  
Factor analysis to develop a Health Vulnerability Index

By using FA to create a linear combination of indicators, a Health 
Vulnerability Index for disaster risk reduction along the Belt and Road 
Initiative was developed (17). The index is based on three latent factors: 
population status, disease prevention and coping capacity. These were 
derived from nine indicators: proportion of the population below 15 and 
above 65 years, under-five mortality ratio, maternal mortality ratio, 
tuberculosis prevalence, age-standardized raised blood pressure, 
physician ratio, hospital bed ratio, and coverage of the measles-
containing-vaccine first-dose (MCV1) and diphtheria tetanus toxoid and 
pertussis (DTP3) vaccines.

Non-linear dimension reduction methods are an extension of the linear 
methods and are useful if Euclidean distances (that is, straight-line 
distance between two points) fail to capture the dissimilarity between the 
observations. These methods reduce the volume of data by simplifying it 
into a set of low-dimensional coordinates that preserve distances in the 
high-dimensional space as much as possible, but involves non-linear 
transformations of the data. 

4.6.7 Conclusions
Risk modelling is well established and can be used in helping resource 
allocation in Health EDRM. In recent years, it has been applied to a wide 
range of temperature-related studies, but consistent associations were not 
often found for other climate-related topics such as rainfall or sea level rise 
(17). Risk modelling in other contexts (such as complex emergencies) or 
between varying contexts (such as rural versus urban) is also needed to 
understand health-related impact of hazards and disasters. 
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4.6.8 Key messages
 o Time series analysis is widely used for establishing short-term 

associations between exposures and health outcomes.

 o Factors associated with protective or preparedness behaviours 
can be identified by applying the multiple logistic regression 
method.

 o Linking Antigenic Properties and Genetic Data, and 
Identification of Proposed Vaccine Strains are two ways of 
inference of phenotypic properties for influenza vaccine 
selection. They estimate the effectiveness of current vaccine 
strains for the emerging strains and identify new antigenic 
variants at an early stage of expansion.

 o In predicting influenza trends, epidemiological approaches, such 
as the susceptible-infections-removed models and agent-based 
models, consider human behaviours and address questions 
related to the impact of prevention measures.

 o In constructing a health-related risk index, dimension reduction 
approaches such as principle component analysis (PCA) and 
factor analysis are widely used to simplify the display of 
multivariate data. 
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